QUESTION PAPER CODE 30/2/1 EXPECTED ANSWER/VALUE POINTS
 SECTION - A

Question numbers 1 to 10 are multiple choice questions of 1 mark each.
You have to select the correct choice :
Q.No.

1. The sum of exponents of prime factors in the prime-factorisation of 196 is
(a) 3
(b) 4
(c) 5
(d) 2

Ans: (b) 4
2. Euclid's division Lemma states that for two positive integers a and b, there exists unique integer q and r satisfying $a=b q+r$, and
(a) $0<r<b$
(b) $0<r \leq b$
(c) $0 \leq r<b$
(d) $0 \leq \mathrm{r} \leq \mathrm{b}$

Ans: (c) $0 \leq \mathrm{r}<\mathrm{b}$
3. The zeroes of the polynomial $x^{2}-3 x-m(m+3)$ are
(a) $\mathrm{m}, \mathrm{m}+3$
(b) $-\mathrm{m}, \mathrm{m}+3$
(c) $\mathrm{m},-(\mathrm{m}+3)$
(d) $-\mathrm{m},-(\mathrm{m}+3)$

Ans: (b) $-\mathrm{m}, \mathrm{m}+3$
4. The value of k for which the system of linear equations $x+2 y=3$, $5 \mathrm{x}+\mathrm{ky}+7=0$ is inconsistent is
(a) $-\frac{14}{3}$
(b) $\frac{2}{5}$
(c) 5
(d) 10

Ans: (d) 10
5. The roots of the quadratic equation $x^{2}-0.04=0$ are
(a) ± 0.2
(b) ± 0.02
(c) 0.4
(d) 2

Ans: (a) ± 0.2
6. The common difference of the A.P. $\frac{1}{\mathrm{p}}, \frac{1-\mathrm{p}}{\mathrm{p}}, \frac{1-2 \mathrm{p}}{\mathrm{p}}, \ldots$ is
(a) 1
(b) $\frac{1}{\mathrm{p}}$
(c) -1
(d) $-\frac{1}{\mathrm{p}}$

Ans: (c) -1
7. The $n^{\text {th }}$ term of the A.P. $a, 3 a, 5 a, \ldots \ldots$ is
(a) na
(b) $(2 n-1) a$
(c) $(2 \mathrm{n}+1) \mathrm{a}$
(d) 2 na

Ans: (b) $(2 n-1) \mathrm{a}$
8. The point P on x -axis equidistant from the points $\mathrm{A}(-1,0)$ and $\mathrm{B}(5,0)$ is
(a) $(2,0)$
(b) $(0,2)$
(c) $(3,0)$
(d) $(2,2)$

Ans: (a) $(2,0)$
9. The co-ordinates of the point which is reflection of point $(-3,5)$ in x-axis are
(a) $(3,5)$
(b) $(3,-5)$
(c) $(-3,-5)$
(d) $(-3,5)$

Ans: (c) $(-3,-5)$
10. If the point $P(6,2)$ divides the line segment joining $A(6,5)$ and $B(4, y)$ in the ratio $3: 1$, then the value of y is
(a) 4
(b) 3
(c) 2
(d) 1

Ans: 1 mark be awarded to everyone
1
In Q. Nos. 11 to 15, fill in the blanks. Each question is of 1 mark.
11. In fig. $1, \mathrm{MN}| | \mathrm{BC}$ and $\mathrm{AM}: \mathrm{MB}=1: 2$, then $\frac{\operatorname{ar}(\triangle \mathrm{AMN})}{\operatorname{ar}(\triangle \mathrm{ABC})}=$ \qquad .

Fig. 1
Ans: $\frac{1}{9}$
12. In given Fig. 2, the length $\mathrm{PB}=$ \qquad cm .

Fig. 2
Ans: 4
13. In $\triangle \mathrm{ABC}, \mathrm{AB}=6 \sqrt{3} \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$, then $\angle \mathrm{B}=$ \qquad .
Ans: 90°

OR

Two triangles are similar if their corresponding sides are \qquad .

Ans: proportional
14. The value of $\left(\tan 1^{\circ} \tan 2^{\circ}\right.$ \qquad $\tan 89^{\circ}$) is equal to \qquad .
Ans: 1
15. In Fig. 3, the angles of depressions from the observing positions O_{1} and O_{2} respectively of the object A are \qquad , \qquad -.

Fig. 3

Ans: $30^{\circ}, 45^{\circ}$

Q. Nos. 16 to $\mathbf{2 0}$ are short answer type questions of $\mathbf{1}$ mark each.

16. If $\sin \mathrm{A}+\sin ^{2} \mathrm{~A}=1$, then find the value of the expression $\left(\cos ^{2} \mathrm{~A}+\cos ^{4} \mathrm{~A}\right)$.

Ans: $\left.\begin{array}{l}\sin A=1-\sin ^{2} A \\ \\ \sin A=\cos ^{2} A\end{array}\right\}$
$\cos ^{2} \mathrm{~A}+\cos ^{4} \mathrm{~A}=\sin \mathrm{A}+\sin ^{2} \mathrm{~A}=1$
17. In Fig. 4 is a sector of circle of radius 10.5 cm . Find the perimeter of the sector. (Take $\pi=\frac{22}{7}$)

Fig. 4
Ans: Perimeter $=2 \mathrm{r}+\frac{\pi \mathrm{r} \theta}{180^{\circ}}$

$$
\begin{aligned}
& =2 \times 10.5+\frac{22}{7} \times 10.5 \times \frac{60^{\circ}}{180^{\circ}} \\
& =21+11=32 \mathrm{~cm}
\end{aligned}
$$

18. If a number x is chosen at random from the numbers $-3,-2,-1,0,1,2,3$, then find the probability of $x^{2}<4$.
Ans: Number of Favourable outcomes $=3$ i.e., $\{-1,0,1\} \quad \therefore \mathrm{P}\left(\mathrm{x}^{2}<4\right)=\frac{3}{7}$

OR

What is the probability that a randomly taken leap year has 52 Sundays ?
Ans: $\mathrm{P}(52$ sundays $)=\frac{5}{7}$
19. Find the class-marks of the classes 10-25 and 35-55.

Ans: Class Marks $\frac{10+25}{2}=17.5 ; \frac{35+55}{2}=45$
20. A die is thrown once. What is the probability of getting a prime number.

Ans: Number of prime numbers $=3$ i.e. ; $\{2,3,5\}$
$P($ Prime Number $)=\frac{3}{6}$ or $\frac{1}{2}$

SECTION - B

Q. Nos. 21 to 26 carry 2 marks each

21. A teacher asked 10 of his students to write a polynomial in one variable on a paper and then to handover the paper. The following were the answers given by the students:
$2 x+3,3 x^{2}+7 x+2,4 x^{3}+3 x^{2}+2, x^{3}+\sqrt{3 x}+7,7 x+\sqrt{7}, 5 x^{3}-7 x+2$,
$2 \mathrm{x}^{2}+3-\frac{5}{\mathrm{x}}, 5 \mathrm{x}-\frac{1}{2}, \mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}, \mathrm{x}+\frac{1}{\mathrm{x}}$.
Answer the following questions :
(i) How many of the above ten, are not polynomials?
(ii) How many of the above ten, are quadratic polynomials?

Ans: (i) 3
(ii) 1
22. In Fig. 5, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O , show that
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DBC})}=\frac{\mathrm{AO}}{\mathrm{DO}}$

Ans:

Draw $A X \perp B C, D Y \perp B C$
$\triangle \mathrm{AOX} \sim \triangle \mathrm{DOY}$

$$
\begin{aligned}
& \frac{A X}{D Y}=\frac{A O}{D O} \\
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{\frac{1}{2} \times B C \times A X}{\frac{1}{2} \times B C \times D Y}
\end{aligned}
$$

$$
\frac{\mathrm{AX}}{\mathrm{DY}}=\frac{\mathrm{AO}}{\mathrm{DO}}(\text { From (1) })
$$

OR
In Fig. 6 , if $\mathrm{AD} \perp \mathrm{BC}$, then prove that $\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}$.

Fig. 6
Ans: In rt $\triangle \mathrm{ABD}$
In rt $\triangle \mathrm{ADC}$
Adding (i) \& (ii)
$\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}$
$\mathrm{CD}^{2}=\mathrm{AC}^{2}-\mathrm{AD}^{2}$
23. Prove that $1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=\operatorname{cosec} \alpha$

Ans: L.H.S $=1+\frac{\operatorname{cosec}^{2} \alpha-1}{1+\operatorname{cosec} \alpha}$

$$
\begin{aligned}
& =1+\frac{(\operatorname{cosec} \alpha-1)(\operatorname{cosec} \alpha+1)}{\operatorname{cosec} \alpha+1} \\
& =\operatorname{cosec} \alpha=\text { R.H.S }
\end{aligned}
$$

1/2

1
1/2
OR
Show that $\tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$
Ans: L.H.S $=\tan ^{4} \theta+\tan ^{2} \theta$

$$
\begin{aligned}
& =\tan ^{2} \theta\left(\tan ^{2} \theta+1\right) \\
& =\left(\sec ^{2} \theta-1\right)\left(\sec ^{2} \theta\right)=\sec ^{4} \theta-\sec ^{2} \theta=\text { R.H.S }
\end{aligned}
$$

24. The volume of a right circular cylinder with its height equal to the radius is $25 \frac{1}{7} \mathrm{~cm}^{3}$. Find the height of the cylinder. (Use $\pi=\frac{22}{7}$)
Ans: Let height and radius of cylinder $=\mathrm{x} \mathrm{cm}$

$$
\begin{aligned}
& \mathrm{V}=\frac{176}{7} \mathrm{~cm}^{3} \\
& \frac{22}{7} \times \mathrm{x}^{2} \times \mathrm{x}=\frac{176}{7} \\
& \mathrm{x}^{3}=8 \Rightarrow \mathrm{x}=2
\end{aligned}
$$

$\therefore \quad$ height of cylinder $=2 \mathrm{~cm}$
25. A child has a die whose six faces show the letters as shown below :

\section*{| A | B | C | E | A |
| :--- | :--- | :--- | :--- | :--- | :--- |}

The die is thrown once. What is the probability of getting (i) A, (ii) D ?
Ans: (i) $\mathrm{P}(\mathrm{A})=\frac{2}{6}$ or $\frac{1}{3}$
(ii) $\mathrm{P}(\mathrm{D})=\frac{1}{6}$
26. Compute the mode for the following frequency distribution :

Size of items (in cm)	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$	$20-24$	$24-28$
Frequency	5	7	9	17	12	10	6

Ans: $l=12 \quad \mathrm{f}_{0}=9 \quad \mathrm{f}_{1}=17 \quad \mathrm{f}_{2}=12 \quad \mathrm{~h}=4$
Mode $=12+\frac{17-9}{34-9-12} \times 4=14.46 \mathrm{~cm}$ (Approx)

SECTION - C

Question numbers 27 to 34 carry 3 marks each.
27. If $2 x+y=23$ and $4 x-y=19$, find the value of $(5 y-2 x)$ and $\left(\frac{y}{x}-2\right)$

Ans: $2 \mathrm{x}+\mathrm{y}=23,4 \mathrm{x}-\mathrm{y}=19$
Solving, we get $x=7, y=9$

$$
5 y-2 x=31, \frac{y}{x}-2=\frac{-5}{7}
$$

OR

Solve for $\mathrm{x}: \frac{1}{\mathrm{x}+4}-\frac{1}{\mathrm{x}+7}=\frac{11}{30}, \mathrm{x} \#-4,7$
Ans: $\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30} \Rightarrow \frac{-11}{(x+4)(x-7)}=\frac{11}{30}$

$$
\begin{aligned}
& \Rightarrow x^{2}-3 \mathrm{x}+2=0 \\
& \Rightarrow(\mathrm{x}-2)(\mathrm{x}-1)=0 \\
& \Rightarrow \mathrm{x}=2,1
\end{aligned}
$$

The Following solution should also be accepted

$$
\begin{aligned}
\frac{1}{x+4}-\frac{1}{x+7}=\frac{11}{30} & \Rightarrow \frac{x+7-x-4}{(x+4)(x-7)}=\frac{11}{30} \\
& \Rightarrow 11 x^{2}+121 x+218=0
\end{aligned}
$$

Here, D = 5049

$$
x=\frac{-121 \pm \sqrt{5049}}{22}
$$

28. Show that the sum of all terms of an A.P. whose first term is a, the second term is b and the last term is c is equal to $\frac{(a+c)(b+c-2 a)}{2(b-a)}$
Ans: Here $\mathrm{d}=\mathrm{b}$ - a
Let c be the $\mathrm{n}^{\text {th }}$ term

$$
\begin{aligned}
& \therefore \mathrm{c}=\mathrm{a}+(\mathrm{n}-1)(\mathrm{b}-\mathrm{a}) \\
& \Rightarrow \mathrm{n}=\frac{\mathrm{c}+\mathrm{b}-2 \mathrm{a}}{\mathrm{~b}-\mathrm{a}} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{\mathrm{c}+\mathrm{b}-2 \mathrm{a}}{2(\mathrm{~b}-\mathrm{a})}(\mathrm{a}+\mathrm{c})
\end{aligned}
$$

OR

Solve the equation : $1+4+7+10+\ldots+x=287$.
Ans: Let sum of n terms $=287$

$$
\begin{aligned}
& \frac{\mathrm{n}}{2}[2 \times 1+(\mathrm{n}-1) 3]=287 \\
& 3 \mathrm{n}^{2}-\mathrm{n}-574=0 \\
&(3 \mathrm{n}+41)(\mathrm{n}-14)=0 \\
& \mathrm{n}=14(\text { Reject } \mathrm{n}\left.=\frac{-41}{3}\right) \\
& \mathrm{x}=\mathrm{a}_{14}=1+13 \times 3=40
\end{aligned}
$$

Duration of flight $=\frac{600}{600}=1 \mathrm{hr}$
30. If the mid-point of the line segment joining the points $A(3,4)$ and $B(k, 6)$ is $P(x, y)$ and $x+y-10=0$, find the value of k.

$$
x=\frac{3+k}{2} \quad y=5
$$

$$
x+y-10=0 \Rightarrow \frac{3+k}{2}+5-10=0
$$

OR

Find the area of triangle ABC with $\mathrm{A}(1,-4)$ and the mid-points of sides through A being $(2,-1)$ and $(0,-1)$.

$$
\Rightarrow \mathrm{k}=7
$$

Ans: $\mathrm{B}(3,2), \mathrm{C}(-1,2)$

$$
\text { Area }=\frac{1}{2}|1(2-2)+3(2+4)-1(-4-2)|=12 \text { sq.units }
$$

31. In Fig. 7, if $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ and their sides of lengths (in cm) are marked along them, then find the lengths of sides of each triangle.

Fig. 7
Ans: As $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$

$$
\frac{2 x-1}{18}=\frac{3 x}{6 x}
$$

$$
x=5
$$

32. If a circle touches the side BC of a triangle ABC at P and extended sides AB and AC at Q and R , respectively, prove that
$\mathrm{AQ}=\frac{1}{2}(\mathrm{BC}+\mathrm{CA}+\mathrm{AB})$
Ans:

Correct Fig

$$
\begin{aligned}
\mathrm{AQ} & =\frac{1}{2}(2 \mathrm{AQ}) \\
& =\frac{1}{2}(\mathrm{AQ}+\mathrm{AQ}) \\
& =\frac{1}{2}(\mathrm{AQ}+\mathrm{AR})
\end{aligned}
$$

$$
=\frac{1}{2}(\mathrm{AB}+\mathrm{BQ}+\mathrm{AC}+\mathrm{CR})
$$

$$
=\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})
$$

$$
\because[\mathrm{BQ}=\mathrm{BP}, \mathrm{CR}=\mathrm{CP}]
$$

33. If $\sin \theta+\cos \theta=\sqrt{2}$, prove that $\tan \theta+\cot \theta=2$.

Ans: $\sin \theta+\cos \theta=\sqrt{2}$
$\tan \theta+1=\sqrt{2} \sec \theta$
Sq. both sides
$\tan ^{2} \theta+1+2 \tan \theta=2 \sec ^{2} \theta$
$\tan ^{2} \theta+1+2 \tan \theta=2\left(1+\tan ^{2} \theta\right)$
$\tan ^{2} \theta+1+2 \tan \theta=2+2 \tan ^{2} \theta$
$2 \tan \theta=\tan ^{2} \theta+1$
$2=\tan \theta+\cot \theta$
34. The area of a circular play ground is $22176 \mathrm{~cm}^{2}$. Find the cost of fencing this ground at the rate of ₹ 50 per metre.
Ans: Let the radius of playground be rcm

$$
\begin{aligned}
\pi \mathrm{r}^{2} & =22176 \mathrm{~cm}^{2} \\
\mathrm{r} & =84 \mathrm{~cm}
\end{aligned}
$$

Circumference $=2 \pi r=2 \times \frac{22}{7} \times 84=528 \mathrm{~cm}$
Cost of fencing $=\frac{50}{100} \times 528=₹ 264$
SECTION - D

Question numbers 35 to 40 carry 4 marks each.

35. Prove that $\sqrt{5}$ is an irrational number.

Ans: Let $\sqrt{5}$ be a rational number.
$\sqrt{5}=\frac{\mathrm{p}}{\mathrm{q}}, \mathrm{p} \& \mathrm{q}$ are coprimes $\& \mathrm{q} \neq 0$
$5 q^{2}=p^{2} \Rightarrow 5$ divides $\mathrm{p}^{2} \Rightarrow 5$ divides p also Let $\mathrm{p}=5 \mathrm{a}$, for some integer a $5 \mathrm{q}^{2}=25 \mathrm{a}^{2} \Rightarrow \mathrm{q}^{2}=5 \mathrm{a}^{2} \Rightarrow 5$ divides $\mathrm{q}^{2} \Rightarrow 5$ divides q also $\therefore 5$ is a common factor of p, q, which is not possible as p, q are coprimes.
Hence assumption is wrong $\sqrt{5}$ is irrational no.
36. It can take 12 hours to fill a swimming pool using two pipes. If the pipe of larger diameter is used for four hours and the pipe of smaller diameter for 9 hours, only half of the pool can be filled. How long would it take for each pipe to fill the pool separately?
Ans: Let time taken by pipe of larger diameter to fill the tank be x hr Let time taken by pipe of smaller diameter to fill the tank be y hr A.T.Q

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{12}, \frac{4}{x}+\frac{9}{y}=\frac{1}{2}
$$

Solving we get $\mathrm{x}=20 \mathrm{hr} \mathrm{y}=30 \mathrm{hr}$
37. Draw a circle of radius 2 cm with centre O and take a point P outside the circle such that $\mathrm{OP}=6.5 \mathrm{~cm}$. From P , draw two tangents to the circle.
Ans: Correct construction of circle of radius 2 cm
Correct construction of tangents.

OR

Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of the first triangle.
Ans: Correct construction of given triangle
Construction of Similar triangle
38. From a point on the ground, the angles of elevation of the bottom and the top of a tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.
Ans: Let height of tower $=\mathrm{hm}$

$$
\begin{aligned}
\text { In rt. } \triangle \mathrm{BCD} \tan 45^{\circ} & =\frac{\mathrm{BC}}{\mathrm{CD}} \\
1 & =\frac{20}{\mathrm{CD}} \\
\mathrm{CD} & =20 \mathrm{~m} \\
\text { In rt. } \triangle \mathrm{ACD} \tan 60^{\circ} & =\frac{\mathrm{AC}}{\mathrm{CD}} \\
\sqrt{3} & =\frac{20+\mathrm{h}}{20} \\
\mathrm{~h} & =20(\sqrt{3}-1) \mathrm{m}
\end{aligned}
$$

corr fig. 1

1

1

1

$$
1 \frac{1}{2}
$$

2

OR

Find the curved surface area of the frustum of a cone, the diameters of whose circular ends are 20 m and 6 m and its height is 24 m .
Ans: $\mathrm{R}=10 \mathrm{~m} \quad \mathrm{r}=3 \mathrm{~m} \mathrm{~h}=24 \mathrm{~m}$

$$
\begin{aligned}
& l=\sqrt{(24)^{2}+(10-3)^{2}}=25 \mathrm{~m} \\
& \mathrm{CSA}=\pi(10+3) 25=325 \pi \mathrm{~m}^{2}
\end{aligned}
$$

40. The mean of the following frequency distribution is 18 . The frequency f in the class interval $19-21$ is missing. Determine f .

Class interval	$11-13$	$13-15$	$15-17$	$17-19$	$19-21$	$21-23$	$23-25$
Frequency	3	6	9	13	f	5	4

