	QUESTION PAPER CODE 30/3/1										
	EAFECTED ANSWER/VALUE PUINTS										
	SECTION – A										
	Question numbers 1 to 10 are multiple choice questions of 1 mark each.										
O Na	You have to select the correct choice :										
Q.No.											
1.	The HCF of 135 and 225 is										
	(a) 15 (b) 75 (c) 45 (d) 5 Ansi: (a) 45	1									
n	Ans: (c) 45										
۷.	(a) 2 (b) 4 (c) 1 (d) 6										
	Ans: (b) 4	1									
3.	The common difference of an AP, whose n^{th} term is $a = (3n + 7)$, is										
	(a) 3 (b) 7 (c) 10 (d) 6										
	Ans: (a) 3	1									
4.	The value of λ for which $(x^2 + 4x + \lambda)$ is a perfect square, is										
	(a) 16 (b) 9 (c) 1 (d) 4										
	Ans: (d) 4	1									
5.	The value of k, for which the pair of linear equations $kx + y = k^2$ and $x + ky = 1$										
	have infinitely many solutions is										
	(a) ± 1 (b) 1 (c) -1 (d) 2										
	Ans: (b) 1	1									
6.	The value of p for which $(2p + 1)$, 10 and $(5p + 5)$ are three consecutive terms of an AP is										
	(a) -1 (b) -2 (c) 1 (d) 2										
	Ans: (d) 2										
	The number of terms of an AP 5, 9, 13, 185 is										
	(a) 31 (b) 51 (c) 41 (d) 40										
	Ans: 1 mark should be given to each candidate.	1									
7.	In Fig. 1, the graph of the polynomial $p(x)$ is given. The number of zeroes of the polynomial is										
	4 3 2 1 -5 -4 -3 -4 Fig. 1										

CBSE Class 10 Maths Question Paper Solution 2020 Set 30/3/1

					_					
	(a) 1 Ans: (b) 2	(b) 2	(c) 3	(d) 0	1					
8.	If (a, b) is the mid	-point of the line se	gment joining the po	oints A(10, -6)						
	and $B(k, 4)$ and a	-2b = 18, the value	of k is $(a) 4$	(J) 40						
	(a) 50 Ans: (b) 22	(0) 22	(6) 4	(u) 40	1					
9.	The value of k for	which the points A	(0, 1), B (2, k) and (C(4, -5) are						
	collinear is			<i></i>						
	(a) 2 Ans: (b) -2	(b) −2	(c) 0	(d) 4	1					
10.	If $\triangle ABC \sim \triangle DEE$ such that $AB = 1.2$ cm and $DE = 1.4$ cm, the ratio of the									
100	areas of \triangle ABC ar	and ΔDEF is								
	(a) 49 : 36	(b) 6 : 7	(c) 7 : 6	(d) 36 : 49						
	Ans: (d) 36 : 49				1					
	In Q. Nos. 11 to 1	5, fill in the blanks	Each question is	of 1 mark :						
11.	$\sqrt{2}$ times the dist	ance between $(0, 5)$	and (-5, 0) is	·						
	Ans: 10				1					
12.	The distance betw	een two parallel tan	gents of a circle of r	adius 4 cm						
	is									
	Ans: 8 cm									
13.	In Fig. 2, PA and PB are tangents to the circle with centre O such that $\angle APB = 50^{\circ}$, then the measure of $\angle OAB$ is									
	P 50° A O									
	Fig. 2									
	Ans: 25°				1					
			OR							
	In Fig. 3, PQ is a $(OPT - 60^\circ)$ that	chord of a circle and the massive of $\langle \mathbf{P} \rangle$	PT is tangent at P s	such that						
	$\angle QPI = 60$, the	The measure of $\angle P$	KQ IS							
			O P G G G G C R C C C C C C C C C C C C C C							
			Fig. 3 1							
	Ans: 120°				1					

.30/3/1.

14.	$\frac{3\cot 40^{\circ}}{\tan 50^{\circ}} - \frac{1}{2} \left(\frac{\cos 35^{\circ}}{\sin 55^{\circ}} \right) = \underline{\qquad}.$	
	Ans: $\frac{5}{2}$	1
15.	If $\cot \theta = \frac{7}{8}$, then the value of $\frac{(1 + \sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(1 - \cos \theta)} =$	
	Ans: $\frac{49}{64}$	1
	Q. Nos. 16 to 20 are short answer type questions of 1 mark each.	
16.	What is the value of $\left(\frac{1}{1+\cot^2\theta}+\frac{1}{1+\tan^2\theta}\right)$?	
	Ans: Given expression = $\sin^2\theta + \cos^2\theta$	1/2
	= 1	1/2
17.	Two right circular cones have their heights in the ratio 1 : 3 and radii in the ratio 3 : 1, what is the ratio of their volumes?	
	Ans: $V_1: V_2 = \frac{1}{3}\pi (3r)^2 h: \frac{1}{3}\pi r^2 (3h)$	1/2
	= 3 : 1	1/2
18.	Using the empirical formula, find the mode of a distribution whose mean is 8.32 and the median is 8.05.	1/0
	Ans: Mode = $3 \times 8.05 - 2 \times 8.32$ = 7.51	1/2 1/2
19.	The probability that it will rain tomorrow is 0.85. What is the probability that it will not rain tomorrow ?	
	Ans: Prob (no rain tomorrow) $= 1 - 0.85$	1/2
	= 0.15	1/2
20.	What is the arithmetic mean of first n natural numbers?	
	Ans: Sum of first n natural numbers = $\frac{n(n+1)}{2}$	1/2
	$\therefore \qquad \text{Mean} = \frac{n+1}{2}$	1/2
	SECTION – B	
	Q. Nos. 21 to 26 carry 2 marks each.	
21.	Find the 11 th term from the last term (towards the first term) of the AP 12, 8, 4, -84	
	Ans: $l = -84$	1/2
	d = -4	1/2
	ι_{11} (nom me end) $-64 + 40 = -44$	1

.30/3/1.

	OR	
	Solve the equation : $1 + 5 + 9 + 13 + + x = 1326$	
	Ans: $\frac{n}{2}(1+x) = 1326$ (i)	1/2
	$x = 1 + (n - 1) \times 4$ (ii)	1/2
	Solving (i) and (ii) $x = 101$	1
22.	In Fig. 4 AB is a chord of circle with centre O, AOC is diameter and AT is tangent at A. Prove that $\angle BAT = \angle ACB$.	
	$\begin{array}{c} C \\ O \\ A \\ Fig. 4 \end{array}$	
	Ans: $\angle BAC = 90^{\circ} - \angle BAT$ (i)	1/2
	In $\triangle BAC$, $\angle B = 90^{\circ}$	1/2
	$\therefore \angle BCA = 90^{\circ} - \angle BAC$	
	or $\angle ACB = \angle BAT$ (Using (1))	1
23.	If $\tan \theta = \frac{3}{4}$, find the value of $\left(\frac{1 - \cos^2 \theta}{1 + \cos^2 \theta}\right)$	
	Ans: $\sec^2\theta = 1 + \frac{9}{16} = \frac{25}{16}$	
	$\therefore \cos^2 \theta = \frac{16}{25}$	1
	Hence $\frac{1-\cos^2\theta}{1+\cos^2\theta} = \frac{1-\frac{16}{25}}{1+\frac{16}{25}} = \frac{9}{41}$	1
	OR	
	If $\tan \theta = \sqrt{3}$, find the value of $\left(\frac{2 \sec \theta}{1 + \tan^2 \theta}\right)$	
	Ans: $\sec^2 \theta = 1 + 3 = 4$	
	\therefore sec $\theta = 2$	1
	Hence $\frac{2 \sec \theta}{1 + \tan^2 \theta} = \frac{2 \times 2}{4} = 1$	1

24.	Read the	follow	ing pa	ssage a	and ans	swer th	e qu	esti	ons giv	en at the er	nd :							
	Students	of Clas	ss XII	presen	ted a g	gift to tl	neir s	scho	ool in t	he form of a	an electric							
	lamp in the shape of a glass hemispherical base surmounted by a metallic cylindrical top of same radius 21 cm and height 3.5 cm. The top was silver																	
	cylindrica	al top o nd the c	of same	e radius	s 21 ct	n and h	eigh ad	t 3.	5 cm.	The top was	s silver							
	(i) What is the cost of silver coating the top at the rate of $\mathbf{\overline{z}}$ 5 per 100 cm ² ?																	
	(i) What is the surface area of glass to be painted red?																	
	Ans: (i) Surface Area of the top = $2 \times \frac{22}{7} \times 21 \times 3.5 = 462 \text{ cm}^2$										1/2							
	Cost of silver coating = $462 \times \frac{5}{100}$ = Rs. 23.10										1/2							
	(i	i) Surfa	ace Ar	ea of g	lass =	$2 imes rac{22}{7}$	× 2	1 ×	21			1/2						
					= 2	2772 cn	n^2					1/2						
25.	Find the Sundays	probab	ility th Mond	at a lea lays	ap year	r select	ed at	ra	ndom v	vill contain	53							
	Ans: 3	66 davs	= 52	weeks	+ 2 da	VS						1/2						
	T	otal po	ssible	outcon	nes are	e 7 (SM	. M7	г. т	W. WT	h. ThF. FS.	SS)	1						
		I.					,	,	1	7 7 - 7	,							
	F	Prob (ha	wing 5	53 Suno	lays &	z 53 Mo	onda	ys)	$=\frac{1}{7}$			1/2						
26.	Find the	value o	of p, if	the me	an of	the foll	owin	ig d	listribut	ion is 7.5.								
	Classes	(f:)	2-4	4-6	6-8	8-10	10-	12	12-14									
	Frequenc	cy (11)	0	8	15	р	8		4									
	Ans:	Class		F	requei	ncy (f)			X	fx		Correct						
		2-4			6				3	18		table = 1						
		4-6			8	_			5	40								
		6-8			15	5			7	105								
		8-10			p				9 11	9p								
		10-12			8				11 12	88 52								
		12-14			4	- n	_		15	$\frac{303 \pm 9n}{303 \pm 9n}$								
					71	Р				505 r 7 p								
	Mean = 7	$7.5 = \frac{3}{10}$	$\frac{03+9}{44}$	$\frac{p}{2} \Rightarrow p$	= 3							1						
			41+p	1														
	1																	

	SECTION – C							
	Q. Nos. 27 to 34 carry 3 marks each.							
27.	Find a, b and c if it is given that the numbers a, 7, b, 23, c are in AP.							
	Ans: a, 7, b, 23, c are in A.P							
	Let d be the common difference of AP.							
	\therefore a + d = 7 (i)	1/2						
	a + 3d = 23 (ii)	1/2						
	Solving (i) & (ii) , $d = 8$	1/2						
	$\therefore a = -1, b = 15, c = 31$	1/2+1/2+1/2						
	OR							
	If m times the m th term of an AP is equal to n times its nth term, show that							
	the $(m + n)^{th}$ term of the AP is zero.							
	Ans: Given $m[a + (m - 1)d] = n[a + (n - 1)d]$	1						
	$\Rightarrow \qquad a(m-n) + d(m^2 - m - n^2 + n) = 0$							
	$\Rightarrow \qquad (m-n) [a + (m+n-1) d = 0]$	1						
	$\therefore \qquad m \neq n \implies a + (m + n - 1) d = 0$	1/2						
	$\Rightarrow a_{m+n} = 0$	1/2						
28.	Find the values of k, for which the quadratic equation							
	$(k + 4) x^{2} + (k + 1) x + 1 = 0$ has equal roots.							
	Ans: For equal roots $(k + 1)^2 - 4(k + 4) \times 1 = 0$	1						
	$\Rightarrow \qquad k^2 - 2k - 15 = 0$	1						
	$\Rightarrow \qquad (k+3) (k-5) = 0$	1/2						
	\Rightarrow k = -3, 5	1/2						
29.	On dividing $x^3 - 3x^2 + x + 2$ by a polynomial $g(x)$, the quotient and remainder were $x = 2$ and $-2x + 4$ respectively. Find $g(x)$							
	A rest $x^3 = 2x^2 + x + 2 = (x - 2) \times c(x) + (-2x + 4)$	1						
	Ans: $x - 3x + x + 2 = (x - 2) \times g(x) + (-2x + 4)$	1						
	$\Rightarrow \qquad (x-2) g(x) = x^2 - 3x^2 + 3x - 2$	1/2						
	$\Rightarrow \qquad \mathbf{g}(\mathbf{x}) = \frac{(\mathbf{x}-2)(\mathbf{x}^2 - \mathbf{x}+1)}{\mathbf{x}^2 - \mathbf{x}^2 - \mathbf{x}^2 - \mathbf{x}^2}$	1						
	\rightarrow $S^{(1)}$ $(x-2)$	-						
	$= x^2 - x + 1$	1/2						
	OR							
	If the sum of the squares of zeros of the quadratic polynomial $f(x) = x^2$. So this 40, find the value of b							
	$f(x) = x^2 - \delta x + \kappa$ is 40, find the value of κ . Ans • Let the zeroes of polynomial $f(x)$ be α and β							
	$\therefore \qquad \alpha + \beta = 8 \text{ and } \alpha\beta = k$	1/2+1/2						
	$\frac{\alpha^2 + \beta^2}{\alpha^2 + \beta^2} = 40$							
	$\Rightarrow \qquad (\alpha + \beta)^2 - 2\alpha\beta = 40$	1						
	$\Rightarrow 64 - 2k = 40$	1/2						
	\Rightarrow k = 12	1/2						

30.	In what ratio does the point $P(-4, y)$ divide the line segment joining the points $A(-6, 10)$ and $B(3, -8)$ if it lies on AB. Hence find the value of y.	
	Ans: Let $AP : PB = k : 1$	
	$\therefore \qquad -4 = \frac{3k-6}{k+1} \qquad \qquad \overset{(-4,y)}{\underset{(-6,10)}{}} $	1
	\Rightarrow $k = \frac{2}{7}$	1
	$\therefore \qquad AP: PB = 2:7$	
	Hence $y = \frac{-8k+10}{k+1} = \frac{-8 \times \frac{2}{7} + 10}{\frac{2}{7} + 1} = 6$	1
31.	Prove that, a tangent to a circle is perpendicular to the radius through the point of contact.	
	Ans: Given, To prove, figure	$1/2 \times 3 = 1\frac{1}{2}$
	Correct proof	$1\frac{1}{2}$
	OR	
	Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line	
	segment joining the points of contact at the centre.	cor. fig. 1/2
	Ans: $\angle PAO = 90^{\circ}$ (radius \perp tangent)	1
	2 PBO = 90	
	PAO + (AOB + (OBP + (BPA - 360°)))	
	$\Rightarrow 90^{\circ} + \angle AOB + 90^{\circ} + \angle BPA = 360^{\circ}$	1
	$\Rightarrow \angle AOB + \angle BPA = 180^{\circ}$	
	or $\angle AOB$ and $\angle BPA$ are supplementary.	1/2
32.	In a right triangle, prove that the square of the hypotenuse is equal to the sum of squares of the other two sides.	
	Ans: Correct given, To prove & figure	$1/2 \times 3 = 1\frac{1}{2}$
	Correct proof	$1\frac{1}{2}$
33.	If $\sin \theta + \cos \theta = p$ and $\sec \theta + \csc \theta = q$, show that $q(p^2 - 1) = 2p$.	

	Ans: LHS = $q(p^2 - 1) = (\sec \theta + \csc \theta) ((\sin \theta + \cos \theta)^2 - 1)$									
	$= \frac{\sin\theta + \cos\theta}{\sin\theta\cos\theta} \times 2\sin\theta\cos\theta$	1+1								
	$= 2 (\sin \theta + \cos \theta)$	1/2								
	= 2p = RHS	1/2								
34.	500 persons are taking dip into a cuboidal pond which is 80 m long and 50 m broad. What is the rise of water level in the pond, if the average displacement of the water by a person is 0.04 m ³ ? Ans: Let the rise in the water level be h									
	$\therefore 500 \times .04 = 80 \times 50 \times h$	2								
	$\Rightarrow h = \frac{500 \times .04}{80 \times 50}$	1/2								
	=.005 m	1/2								
	SECTION – D O Nog 25 to 40 commu 4 months each									
	Q. Nos. 55 to 40 carry 4 marks each.									
35.	Show that $(12)^n$ cannot end with digit 0 or 5 for any natural number n.									
	Ans: $12^n = (2^2 \times 3)^n = 2^{2n} \times 3^n$	2								
	Since there is no factor of the form 5^m therefore 12^n can not end with digit 0 or 5 for any natural number n.	2								
	Drove that $\left(\sqrt{2} + \sqrt{5}\right)$ is irretional									
	Prove that $(\sqrt{2} + \sqrt{3})$ is irrational.									
	Ans: Let us assume $\sqrt{2} + \sqrt{5}$ is rational number									
	Let $\sqrt{2} + \sqrt{5} = m$ where m is rational	1								
	$\Rightarrow \left(\sqrt{2} + \sqrt{5}\right)^2 = m^2$	1								
	\Rightarrow m ² = 7 + 2 $\sqrt{10}$									
	$\Rightarrow \sqrt{10} = \frac{m^2 - 7}{2}$	1								
	··· m is rational									
	$\therefore \frac{m^2 - 7}{2} \text{ is also rational}$									
	but $\sqrt{10}$ is irrational									
	\Rightarrow LHS \neq RHS									
	It means our assumption was wrong.									
	Hence $\sqrt{2} + \sqrt{5}$ is an irrational number.	1								

36.	A train covered a certain distance at a uniform speed. If the train would have been 6 km/hr. faster, it would have taken 4 hours less than the	
	scheduled time and if the train were slower by 6 km/hr., it would have taken 6 hrs. more than the scheduled time. Find the length of the journey.	
	Ans: Let usual speed of train be x km/hr and distance covered be d km.	
	Therefore $\frac{d}{x} - \frac{d}{x+6} = 4$ (i)	1
	$\frac{d}{x-6} - \frac{d}{x} = 6 \qquad \dots (ii)$	1
	Solving (i) and (ii) $x = 30$ and $d = 720$	2
	\therefore Length of journey = 720 km	
37.	In an equilateral triangle ABC, D is a point on the side BC such that	
	$BD = \frac{1}{3}BC$. Prove that $9 AD^2 = 7 AB^2$.	cor. fig 1/2
	Ans: Draw AE \perp BC	
	$\therefore \Delta ABC$ is an equilateral Δ	
	$\therefore BE = \frac{BC}{2}$	1/2
	Now, $AD^2 = AE^2 + DE^2$ and $AB^2 = AE^2 + BE^2$	1
	$\Rightarrow AB^2 = AD^2 - DE^2 + BE^2$	
	$= AD^2 + (BE + DE) (BE - DE)$	1/2
	$= AD^{2} + \frac{BC}{3} \times \left(\frac{BC}{2} + \frac{BC}{2} - \frac{BC}{3}\right)$	
	$= AD^{2} + \frac{2}{9}BC^{2} = AD^{2} + \frac{2}{9}AB^{2}$	1
	$\Rightarrow 7AB^2 = 9AD^2$	1/2
	OR Prove that the sum of squares of the sides of a rhombus is equal to the	
	sum of the squares of its diagonals. D_{const}	
	Ans: $AB^2 + BC^2 + CD^2 + AD^2$	cor. fig 1/2
	$= 4 \text{ AB}^2 (\because \text{ ABCD is a rhombus})$	
	$= 4 \left(OA + OB \right)$	1
	$=4\left(\frac{AC^2}{4}+\frac{BD^2}{4}\right)$	1
	$=AC^2 + BD^2$	1/2

.30/3/1.

40.	For the following frequency distribution, draw a cumulative frequency curve of 'more than' type and hence obtain the median value.									
	Classes 0-10 10-20 20-30 30-40 40-50 50-60 60-70									
	Frequency 5 15 20 23 17 11 9									
	Ans: Plotting points (0, 100) (10, 95) (20, 80) (30, 60) (40, 37) (50, 20) (60, 9)									2
	and joining them.									$1\frac{1}{2}$
	Median = 34.3 (approx)									1/2