CBSE Class 10 Science Question Paper Solution 2020 Set 31/1/1

Series: JBB/1 SET-1 Paper Code No: 31/1/1

		Code IV	0. 31/1/1	
	MARKING SCHEME – CLASS X SCIENCE (2019-20)			
CNO	QUESTION PAPER CODE: SET 31/1/1			
S.NO	VALUE POINTS/EXPECTED ANSWER	MARKS	TOTAL MARKS	
	SECTION A		WIAKKS	
1.	Cyclopentene / Cyclohexene-formula or structure (or any other).	1	1	
1.	If candidate writes Benzene give full mark	1	1	
2	Electromagnetic Induction	1	1	
3.	a) Thick hair growth in armpits, genital area/thinner hair on arms, legs,	1	1	
3.	face/ more active oil secretion from glands on skin/Occurrence of			
	pimples (any two)	$\frac{1}{2} + \frac{1}{2}$		
	b) Imbalance in male – female ratio/ decline in child sex ratio	1		
	c) Oral pills	1		
	d) Rate of birth and death	1	4	
4.	a) Human beings are at the top level in any food chain	1		
	b) Washing of vegetables, fruits, grains thoroughly/Organic farming/			
	Use of bio pesticides (any one)	1		
	c) (b) / Trophic level	1		
	d) (a) / Consumer	1	4	
5.	(d) / (A) and (B)	70,		
	OR			
	(d)/ Double displacement reaction	1	1	
6.	(d) / (B), (C) and (D)	1	1	
7.	(c)/ Sodium hydrogen carbonate and tartaric acid	1		
	[Note: If a candidate writes 'none of the options is correct'/ 'sodium			
	hydrogen carbonate' give full credit.]		1	
8.	$(c) / CaSO_4.\frac{1}{2}H_2O$	1	1	
9.	(d) / All reflecting surfaces			
	OR			
	(d) / Virtual and erect	1	1	
10.	(d) / Increases heavily			
	OR			
	(d) / 1A	1	1	
11.	(d) / Afforestation	1	1	
12.	(b) / (A) and (D)	1	1	
13.	(b) / Both (A) and (R) are true but (R) is not the correct explanation	1	1	
4.4	of the assertion (A).	4	4	
14.	(a) / Both (A) and (R) are true and (R) is the correct explanation of	1	1	
	the assertion (A).			
1.5	SECTION B			
15.	A 1.1	1/-		
	A black colour is formed on the surface Hard	1/2		
	Heat	1/4		
	2Cu + O ₂ \Longrightarrow 2CuO	1/2 1/2		
	Brown Copper Oxide; Black Colour	72		
			<u> </u>	

	Original/brown colour is restored.	1/2	
	Heat	1/	
	$CuO + H_2 \longrightarrow Cu + H_2O$	1/2 1/2	2
16	Black Copper; Brown	72	3
16.	Products: Hydrogen Chlorine Sodium hydroxide		
	Products: Hydrogen, Chlorine, Sodium hydroxide Uses:	1 ½	
	Hydrogen: In the production of margarine/ ammonia/as a fuel		
	Chlorine: Water treatment/ swimming pools/ production of		
	PVC/ Disinfectants/CFCs/Pesticides.		
	Sodium hydroxide: For degreasing metal surfaces/ in making		
	soaps and detergents/ paper making/ artificial fibres.	½ × 3	
	(any one use of these or any other)		
	OR		
	By recrystallisation of sodium carbonate	1	
	• Na ₂ CO ₃ + 10H ₂ O → Na ₂ CO ₃ .10H ₂ O	1	
	Basic Salt	1/2	2
	Permanent hardness	1/2	3
17.	i) By dissolving 5g of KMnO ₄ in 100mL of water/		
	By dissolving 5g of KMnO ₄ in water to make a final volume of 100	1	
	mL. ii) As an oxidizing agent	1/2	
	Purple colour persists	1/2	
	Alkaline KMnO ₄	/2	
	iii) CH₃CH2OH	1	3
	heat		
18.	 The adrenaline hormone is secreted into the blood. 	1	
	 The heart beats faster resulting in supply of more oxygen to the 		
	muscles.	1/2	
	 Blood is diverted to skeletal muscles. 	1/2	
	 The breathing rate increases. 	1/2	
	 The blood supply to digestive systems and skin is reduced. OR 	1/2	
	Electrical impulses have limited access to only those cells that	1.1/	
	are connected by nervous tissue/ neurons, whereas chemical	1 ½	
	signals can reach each and every cell of the body.		
	 Cells need time to reset in order to create repeated/ new 	1 1/2	
	electrical impulses whereas no such time is required for	1 /2	3
10	chemical communication.	1	
19.	Pollination is the transfer of pollen from anther to stigma	1	
	Self Pollination Cross Pollination		
	Transfer of pollen in the same Transfer of pollen from one		
	flower to another.	1	
	Pollination leads to fertilization resulting in the formation of	1	3
	zygote.	1	J

20.	Homologous structures are those which have similar basic structure and origin but perform different functions.	1	
	 Example: forelimbs of reptiles, amphibians, humans, wings of birds 	1/2	
	• Yes	1/2	
	• Similarity in basic design of the structure indicates that their ancestors were common.	1	3
21.	Because of scattering of light. Instances: • When a fine beam of light enters a smoke-filled dark room through a small hole. • When sunlight passes through a canopy of dense forest in foggy/ misty conditions. • Blue colour of sky. • Red colour of the sun during sunrise or sunset. (or any other) OR • Prism has 2 inclined refracting surfaces whereas a glass slab has 2 parallel refracting surfaces.	1 1/2 × 4 1 1/2 1/2 1/2 1/2	
22.	ii) When white light passes through a glass slab, it gets laterally displaced whereas in prism, dispersion takes place. Sun nearly overhead	1/2	3
	Blue scattered away Sun appears reddish Sun near horizon Observer		
	Diagram Labelling	1 ½×4	3

		•	
23.	$V \alpha I$ or Potential difference is directly proportional to current	1	
	Note: If circuit diagram is correct but labelling of ammeter and voltmeter are incorrect, deduct 1 mark.	2	3
24	i) $H = I^2Rt$	1	
24.	/	1	
	ii) $H = V.I.t$	1,	
	= V.Q	1/2	
	Given: $V = 40 \text{ volts}$, $Q = 96000 \text{ C}$		
	$H = 40 \text{ V} \times 96000 \text{ C}$	1	
	$= 3.84 \times 10^6 \mathrm{J}$	1/2	3
	SECTION C		
25.	These metals have more affinity for oxygen than carbon.	1	
	Towards the top of the reactivity series .	1	
	By electrotytic reduction of their molten ores.	1	
	 Example: Extraction of sodium from molten sodium chloride by 		
	electrolysis.		
	Process:		
	Molten NaCl is taken in an electrolytic cell and on passing	1	
	electricity Na is deposited at cathode and chlorine is liberated at	1	
	anode.		
	Reactions –		
	At cathode - Na ⁺ + $e^- \rightarrow Na$	1/2	
	At anode - $2Cl^{-}$ \rightarrow $Cl_2 + 2e^{-}$	1/2	
	(or any other example)		5
26	i) E, it has 4 valence electrons.	1/2 + 1/2	
	ii) B, it needs only 2 electrons to attain stable configuration.	$\frac{1}{2} + \frac{1}{2}$	
	iii) D, it loses two electrons to attain stable configuration.	$\frac{1}{2} + \frac{1}{2}$	
	iv) F, it has the largest size since size increases down the group.	$\frac{1}{2} + \frac{1}{2}$	
	v) Noble gases, outermost shell is complete.	$\frac{1}{2} + \frac{1}{2}$	
	OR		
	 Atomic size is the distance between the centre of the nucleus and the outermost shell of an isolated atom. 	1	
	Picometer /pm	1	
	Trends in Atomic radius		
		1/2	
	In a group: increases down the group;	1	
	due to addition of a new shell.	1	

	In a period: atomic radius decreases from left to right;	1/2	
	due to increase in pulling power of nucleus /	1	
	due to addition of electrons in the same shell.	1	5
27	a) Rate of breathing is faster in aquatic organisms because the amount	1/2	
	of dissolved oxygen in water is lower as compared to the amount of	1	
	oxygen in air.		
	b)		
	Pharynx Trachea Lung Diaphragm		
		OX	
	Diagram	1	
	5 labellings	½ x 5	
	OR		
	a) A pair of kidneys, a pair of ureters, a urinary bladder and a urethra.	½ x 4	
	b) A kidney has a large number of filteration units called nephrons. Each	1/2	
	nephron has cup shaped Bowman's capsule containing a bunch of	1/2	
	capillaries called glomerulus. Blood gets filtered in the glomerulus.	1/2	
	Filterate gets collected in Bowman's capsule. Some useful substances	1/2	
	such as glucose, amino acids, salts and water are selectively reabsorbed	1/2	
	as urine flows through nephron tube. The urine formed in each kidney is	1/2	
	eventually stored in the urinary bladder	, -	5
28	a) Law of dominance of traits: -In a cross between a pair of contrasting		
	characters, only one parental character will be expressed in F ₁		
	generation which is called dominant trait and the other is called	1	
	recessive trait.		
	For example – in pea plants,		
	Tall Dwarf /Short	1/2	
	Parents TT tt		
	Gametes		
	(T) (E)		
		1/2	
	1 t	7 2	
	F ₁ All Tall		
21/1/1	Dogg 7 of 0		I.

	All plants in F1 generation were tall proving that the gene for tallness is dominant over the gene for dwarfness/ short, which is not able to express itself in the presence of dominant trait. (any other example)	1	
	b) Traits acquired by an organism during its lifetime are known as aquired traits. These traits are not inherited because they occur in somatic cells only/do not cause any change in the DNA of the germ cells.	1	5
29	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	ii) (a) Or Or	1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	In case (i) sign is positive and m> 1 (ii) sign is positive and m < 1	$\frac{1/2 + 1/2}{1/2 + 1/2}$	
	OR Given $h = +4.0 \text{ cm}, u = -25.0 \text{ cm}, f = -15.0 \text{ cm}$	1/2	
	i) image distance $v = ?$; mirror formula : $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ or $\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$; $= -\frac{1}{15} - (-\frac{1}{25})$	1/2	
		1	

	1 1 -5+3		
	$= \frac{-1}{15} + \frac{1}{25} = \frac{313}{75}$ $= \frac{-2}{75}$ $v = -37.5 \text{ cm}$ The screen should be placed 37.5 cm in front of the mirror.	1/2	
	ii) $m = \frac{h^1}{h} = -\frac{v}{u}$	1/2	
	: $h^1 = -\frac{v}{u}$. h = $-\frac{(-37.5 \times 4)}{-25}$	1/2	
	$h^1 = -6.0 \text{ cm (size of the image)}.$		
	B' C A D P	1	
	Note: Deduct half mark for not showing arrows in ray diagrams.		5
30	a) A current carrying solenoid is called an electromageet /when soft iron is placed inside a solenoid carrying current, the soft iron piece behaves like a magnet so long as electric current passes through it. The magnet	1	
	so formed is electromagnet. Uses: In electric motors, electric bells, (or any other) b)	1/2 + 1/2	
		1	
	(Direction of current) c) Soft iron core is used to increase the strength/power of the electro magnet.	1/2 1/2	
	d) i) By increasing the current ii) By increasing the number of turns in the coil.	1/2 + 1/2	5