CBSE Class 10 Science Question Paper Solution 2020

 Set 31/3/1Series -JBB/3

Set -1

Paper Code : 31/3/1

MARKING SCHEME -CLASS X SCIENCE (2019-20)			
QUESTION PAPER CODE : SET 31/3/1			
S.NO	VALUE POINTS/EXPECTED ANSWER	MARKS	TOTAL MARKS
	SECTION A		
1.	Covalent bonds are formed by sharing of electron pair /pairs between two atoms.	1	1
2.	Tendency of an element to lose electrons. OR Atomic radii increases from Na to Cs due to addition of new shells.	1	1
3.	(a) Hydropower is harnessed by converting the potential energy of falling water from a height into electricity. (b) It is the power developed when $10^{6} \mathrm{~J}$ of work is done per second. / $1 \mathrm{MW}=10^{6}$ watts. (c) Loss of agricultural land / displacement of a large number of peasants and tribals/ destruction of ecosystem. (d) The blades of turbine move the armature of a generator with high speed to generate electricity.	$\begin{gathered} 1 \\ 1 \\ \\ 1 / 2,1 / 2 \\ 1 \\ \hline \end{gathered}$	4
4.	(a) She should monitor iodine intake in her diet. (b) During menstruation / during pregnancy and after going through menopause. (c) Low TSH level leads to swelling of neck region / disease called goiter. (d) Iodine	$\begin{gathered} 1 \\ 1 / 2,1 / 2 \\ 1 \\ 1 \end{gathered}$	4
5.	(a) / Scattering of light is not enough at such heights	1	1
6.	(c) $/ 2 \mathrm{~A}$	1	1
7.	(a) $/ 2 \Omega$	1	1
8.	(a)/This is an ideal setting of the Khadin system and $\mathrm{A}=$ catchment area; $\mathrm{B}=$ Saline area ; $\mathrm{C}=$ Shallow dugwell. OR (a) / biodiversity which faces large destruction.	1	1
9.	(c) / Lead storage battery manufacturing factories near A and soaps and detergents factories near B.	1	1
10.	(b) / Formation of crystals by process of crystallisation.	1	1
11.	(c) / A has pH greater than 7 and B has pH less than 7 .	1	1
12.	(d) / Group 16 and Period 3 OR (d) $/(\mathrm{A}),(\mathrm{B}) \&(\mathrm{C})$	1 1	1
13.	(a) / Both (A) and (R) are true and (R) is the correct explanation of the assertion.	1	1
14.	(c) / A is true but R is false.	1	1
	SECTION B		
15.	(i) White to grey Reason : Silver chloride decomposes to produce silver and chlorine. (ii) Brown to black Reason : Copper oxide is produced on heating. (iii) Blue to colourless Reason : Zinc Sulphate is formed.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	3

16.	(i) $2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{Zn}_{(\mathrm{s})} \rightarrow \mathrm{Na}_{2} \mathrm{Zn} \mathrm{O}_{2(\text { aq })}+\mathrm{H}_{2(\mathrm{~g})}$ (ii) $\mathrm{CaCO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})} \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2(\mathrm{aq})}$ (iii) $\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-}$ Note : Deduct half marks if equations are not balanced. OR (i) $\mathrm{G}=\mathrm{Cl}_{2}$ $\mathrm{C}=\mathrm{CaOCl}_{2}$ (ii) $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{Ca} \mathrm{OCl}_{2}+\mathrm{H}_{2} \mathrm{O}$ (iii) Common name - Bleaching Powder Chemical name - Calcium Oxychloride Note : Give full credit for writing common name only	1 1 1 $\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 \\ 1 \end{gathered}$	3
17.	(i) Category A / Li, Na, K (ii) Because the physical as well as chemical properties of elements of category A, B and C are different. (iii) No Reason : Because Newlands' law of octaves was applicable only upto calcium.	$\begin{gathered} 1 \\ 1 \\ 1 / 2 \\ 1 / 2 \end{gathered}$	3
18.	(a) Cereal Plant \longrightarrow Human Beings. (b) Pesticides being non-biodegradable accumulate progressively at each trophic level/ Leads to Biomagnification. (c) OR (a) - Harmful effects of using plastic bags : (i) They lead to land /water pollution when disposed improperly. (ii) Burning of plastic would produce toxic gases/ air pollution. (iii) Plastic bags can block the drainage system. - Alternatives to the usage of plastic bags: i) Use of cloth bags/ jute bags/ paper bags ii) Metal or glass containers. (b) (i) Segregation of biodegradable and non-biodegradable wastes for recycling / Segregation of dry and wet waste for recycling. (ii) Reuse of already used items like glass bottles for storage. (iii) composting (or any other)	$1 / 2,1 / 2$ $1 / 2,1 / 2$	3

19.	(a) (i) Enzyme trypsin : Helps in the digestion of proteins. (ii) Enzyme lipase : Helps in the breaking down of emulsified fats. (b) Two functions: - Increase the surface area . - Helps in absorption of digested food. (Note : Full credit for the statement : Increase the surface area for the absorption of digested food).	$\begin{gathered} 1 \\ 1 \\ 1 / 2 \\ 1 / 2 \end{gathered}$	3
20.	(a) (i) Analogous (ii) Analogous (iii) Homologous (iv) Analogous (b) Homologous organs have similar origin and basic structure but perform different functions whereas Analogous organs have different basic structure but perform similar functions.	$\begin{gathered} 1 / 2 \times 4 \\ 1 / 2 \\ 1 / 2 \end{gathered}$	3
21.	(a) (i) Green (ii) 25% (iii) GG: Gg 1:2 (b) The traits which are expressed in F_{1} progeny are called dominant traits, whereas the traits which are unable to express themselves in F_{1} progeny but reappear in the F_{2} progeny are called recessive traits.	$1 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$	3
22.	(i) Converging Lens (ii) Magnifying Glass, Microscope (iii) Three Characteristics of the image : (a) Virtual (b) Erect (c) Magnified	$\begin{gathered} 1 / 2 \\ 1 / 2,1 / 2 \\ 1 / 2 \times 3 \\ \hline \end{gathered}$	3
23.	(i) The strength of magnetic field is higher near the poles /ends of solenoid. (ii) A current carrying solenoid behaves as a bar magnet. (iii) If a fuse, with a defined rating, is replaced by one with a larger rating then the fuse wire will not burn even when a current greater than safe limit is flowing. As a result the electrical circuit / appliances will be damaged.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1	3
24.	(a)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

	(b) Splitting into seven colours / Dispersion / VIBGYOR / Note: Marks may also be awarded if answer is given in the form of a figure. OR (a) (i) Bifocal Lens (ii) Upper part of lens is concave and lower part of the lens is convex. (b) $\begin{aligned} \mathrm{P} & =+3 \mathrm{D} \\ \mathrm{f} & =\frac{1}{\mathrm{P}} \\ & =\frac{1}{3} \mathrm{~m}=\frac{+100}{3} \mathrm{~cm}=+33.3 \mathrm{~cm} \\ \mathrm{P} & =-3 \mathrm{D} \\ \mathrm{f} & =\frac{-100}{3}=-33.3 \mathrm{~cm} \end{aligned}$		3
	SECTION C		
25.	(i) $2 \mathrm{HgO} \xrightarrow{\text { Heat }} 2 \mathrm{Hg}+\mathrm{O}_{2}$ (ii) $2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{Cu}_{2} \mathrm{~S} \xrightarrow{\text { Heat }} 6 \mathrm{Cu}+\mathrm{SO}_{2}$ (iii) $3 \mathrm{MnO}_{2}+4 \mathrm{Al} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{Mn}+$ heat (iv) $\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}+$ heat (v) $\mathrm{ZnCO}_{3} \xrightarrow{\text { Heat }} \mathrm{ZnO}+\mathrm{CO}_{2}$ (Note : Deduct $1 / 2$ marks if equations are not balanced.)	1 1 1 1 1	

27.		$1 / 2 \times 8$ 1	5
28.	(a) Drawing Four Labellings (b) Pollen tube carries the male germ cell to reach the ovary and fuse with the female germ cell. (c) (i) Seed \leftarrow Ovule (ii) Fruit \leftarrow Ovary OR (a) Two reasons : - Avoids unwanted/undesirable pregancies/ STD's - Use of condom prevents the transmission of infections from one person to another. (b) Oral contraceptives change the hormonal balance of the body so that the eggs are not released. (c) Sex selective abortion is a procedure that is done for female foetuses / female foeticide. It adversely affects the male-female sex ratio.	$\begin{gathered} 1 \\ 1 / 2 \times 4 \\ 1 \\ 1 / 2 \\ 1 / 2 \\ \\ \\ 1 \\ 1 \end{gathered}$	5

29. (a) R_{3} and R_{4} are in parallel combination .
$\therefore \mathrm{R}_{\text {parallel }}$ is given by
$\frac{1}{\mathrm{R}_{\mathrm{p}}}=\frac{1}{\mathrm{R}_{3}}+\frac{1}{\mathrm{R}_{4}}$
$\frac{1}{\mathrm{R}_{\mathrm{p}}}=\frac{\mathrm{R}_{4}+\mathrm{R}_{3}}{\mathrm{R}_{3} \mathrm{R}_{4}}$
$R_{p}=\frac{R_{3} R_{4}}{R_{4}+R_{3}}$
Now, $R_{1} R_{2}$ and R_{p} are in series.
$\therefore \mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{\mathrm{p}}$

$$
=\mathrm{R}_{1}+\mathrm{R}_{2}+\frac{\mathrm{R}_{3} \mathrm{R}_{4}}{\mathrm{R}_{4}+\mathrm{R}_{3}}
$$

- the time for which the current flows through the resistor.
(Note : if a candidate writes $\mathrm{H}=\mathrm{I}^{2}$ Rt give full credit).
(c) $\mathrm{P}=\mathrm{V}$ I or $\quad \mathrm{I}=\frac{\mathrm{P}}{\mathrm{V}}$

$$
\mathrm{I}=\frac{1000 \mathrm{watt}}{220 \mathrm{volt}}=4.54 \mathrm{~A}
$$

Since 4.54 ampere current flows in the circuit, a 5 A fuse must be used.
(d) Electric bulb \& electric heater will not get currents and voltages as per their requirement.
(a) It is a convex mirror.So focal length should be positive.

Radius of curvature $\mathrm{R}=+5 \mathrm{~m}$

$$
\text { Object distance } \quad u=-20 m
$$

Mirror formula $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\frac{1}{v}+\frac{1}{-20}=\frac{1}{2.5}$
$\frac{1}{\mathrm{v}}=\frac{1}{20}+\frac{1}{2.5}$
$\frac{1}{v}=\frac{1}{20}+\frac{10}{25}$
30.

$$
\therefore \text { focal length } \quad \mathrm{f}=\frac{5}{2}=+2.5 \mathrm{~m}
$$

