CBSE Class 10 Science Question Paper Solution 2020 Set 31/4/1

Sorios	-JBB/4 Set -1 Pap	er Code : 3	1/4/1		
Series	MARKING SCHEME –CLASS X SCIENCE (2019-20)				
QUESTION PAPER CODE : SET 31/4/1					
S.NO	VALUE POINTS/EXPECTED ANSWER	MARKS	TOTAL MARKS		
	SECTION A				
1.	5 valence electrons	1	1		
2	The electric current generated /induced in a conductor by changing magnetic field around it.	1	1		
3.	(a) The properties of elements are the periodic functions of their atomic masses.	1			
	(b) To fill with undiscovered elements.	1			
	(c) (ii)/RH ₄ , RO ₂	1			
	(d) (i)/Atoms of an element with similar chemical properties but				
	different atomic masses.	1	4		
4.	(a) Use of separate bins for plastic and paper ; separation of biodegradable and non biodegradable wasteor any other.	1/2+ 1/2			
	(b)Packaging of articles like water, food, milk, biscuits etc.				
	• Disposable utility items –bowls, tumblers, plates, leaves etc.	$\frac{1}{2} + \frac{1}{2}$			
	(c) By providing cloth /jute /earthern pots and utensils/ paper or any other material for the similar purposes.	1			
	(d) • Yes	1/2			
	• The action of microbes is tested in the laboratory creating the same conditions as in the landfill.	1/2	4		
5.	(C) / Valves ensure that the blood does not flow backwards.	1	1		
6.	(A)/ takes place in yeast during fermentation. OR				
	(A)/ small intestine	1	1		
7.	(B) /fusion of nuclei of male and female gamete.	1	1		
8.	(A) $/1 \Omega$ OR	1	1		
	(B) /half	1			
<u>9.</u>	(C) /direction of the induced current.	1	1		
10.	(B)/ The nucleus of Uranium is bombarded with high energy neutrons. OR	1	1		
	(A)/ Biomass				
11.	(C) /various interlinked food chains in an ecosystem.	1	1		
12.	Note: Treat all answers as correct. Give full credit even if not attempted.	1	1		
13.	(b) /Both (A) and (R) are true but (R) is not the correct explanation of theassertion (A).	1	1		
14.	(a) /Both (A) and (R) are true and (R) is the correct explanation of the assertion (A).	1	1		
	SECTION B				
15.	(a) Lead iodide; Yellowcolour (b) $Pb(NO_3)_2 + 2 KI \rightarrow PbI_2 + 2KNO_3$	$\frac{1/2 + 1/2}{1}$			
	Note : ¹ / ₂ marks to be deducted if reaction is not balanced.				
31/4/1	Page 3 of 9				

	(c) Double displa	acement reaction ;	Due to ex	change of ions.	1/2+1/2	3
			OR	C		
	Fats and	oils become ranci	d.		1/2	
	Observab	le changes –				
		ge in taste			1⁄2	
		ge in smell			1⁄2	
		ys of prevention :	_			
				which prevent oxidation.	1⁄2	
		food in air tight c			1⁄2	
		trogen gas in pac		1.	1⁄2	
16.		a ogon gas in pae				
10.	Galva	nisation		Alloying		
		er of zinc metal	1 Mixin	g of a metal with metal or		
	on the metal.	er of Zine metal	non-n	_		
	2. Not a homog	eneous mixture		geneous mixture.		
	3. No change in			e in physical properties of		
		etals takes place.		s takes place.		
	-	s an outcome of		vity of metals do not play		
	the reactivity of			ole in it.	201	
	5. Prevents rust	ing only.		alloys may prevent		
			-	nd also used for other		
			advantag		1×3	3
			OR	(Any Three)	17(5	5
		Cold W		Hot Water		
		Reacts v	violently	React more		
		• Heat is a	evolved.	violently		
	Sodium	1.00		• More heat is		
		1		evolved.		
				(Any one point)		
		Reacts 1	ess	Reacts violently		
	Calcium	violently		with hot water and		
		compare		sticks to surface of		
		sodium.		metal and floats on		
				surface of water.		
	Magnesium	Does no	t react	React with hot		
	Magnesium	with col		water and floats on		
		with con	u water	surface of water.	12	
				surface of water.	1×3	
17.	Carbon at	tom, the first men	ber of gro	up 14 has the smallest size		
	in the group and highest inter-atomic force of attraction.It has four valence electrons and requires four more electrons to					
		 It has four valence electrons and requires four more electrons to attain stable configuration. Due to its small size, nucleus of carbon is able to hold the shared pairs of electrons strongly. 				
	-	 The bonds formed by other elements of the same group are 				
		•		• •		
	weaker d	ue to bigger size of	n meir ato		1×3	3
				(Any Three)	1	2

			ī
18.	• A cheetah on seeing a prey generates a <u>nerve impulse</u> which reaches the muscles and the muscle fibre moves. The muscle cell will then move by <u>changing their shape</u> so that muscle cells shorten.	1 1⁄2	
	• Muscle cells have <u>special proteins</u> that change both shape and		
	their arrangement in the cell in response to nervous electrical impulses.	1	
	When this happens <u>new arrangements</u> of these proteins give the	1/	2
	muscle cells a shorter form.	1/2	3
19.	The movement of the growth of the roots downwards and the shoots upwards under the stimuli of gravity is called geotropism./ The	1	
	movement of the part of the plant towards or away from the stimulus		
	gravity.		
	Negatively geotropic		
	-		
	Mil Positively geotropic		
	Diagram Labelling	1 1⁄2+ 1⁄2	3
20.	 Evolution – Gradual change in living organisms with time since the beginning of life resulting in the formation of a new species/ Evolution is simply the generation of diversity and the shaping of diversity by environmental selection. Evolution cannot be equated with progress because more and more complex body designs have emerged and evolved over time but this does not mean that older designs are inefficient.Foreg. Bacteria are simpler organisms but some inhabit the most inhospitable habitats like hot springs, deep sea, thermal vents and the ice in Antartica. 	1	3
	OR Examples of feathers :		
	 Feathers can start out as providing insulation in cold weather but later they might become useful for flight. Some dinosaurs have feathers but they could not fly. Birds later adapted the feathers for flight . This shows that birds are closely related to reptiles. 	1/2 1 1 1/2	
21.	(a) Behind the mirror	1/2	
	(b) Magnified	1/2	
	(c) Virtual and erect	1/2	
	Labelled ray diagram		
		11/	2
	Isom -	11/2	3
31/4/1	Page 5 of 9		

22.	• $n_{xy} = \frac{2}{3}$ \therefore $n_{yx} = \frac{3}{2}$	1/2	
	$n_{yz} = \frac{4}{3}$ \therefore $n_{zy} = \frac{3}{4}$	1/2	
	$n_{zx} = n_{zy} X n_{yx}$	1/2	
	:. $n_{zx} = \frac{3}{4} \times \frac{3}{2} = \frac{9}{8}$	1⁄2	
	• $n_{yx} = \frac{V_x}{V_y}$	1⁄2	
	$\frac{3}{2} = \frac{3 \times 10^8}{V_y}$	1⁄2	
	$V_y = \frac{3 \times 10^8 \times 2}{3} = 2 \times 10^8 \text{ m/s}$		3
23.	(a) Presbyopia	1⁄2	
	(b) Gradual weakening of the ciliary muscles of the eye/ diminishing flexibility of the eye lens.	1	
	(c) Bifocal lens	1⁄2	
	Lens Lens	1	
		1	3
24.	By placing second (identical) prism in an inverted position with respect to the first prism.	1	
	Diagram Labelling	1 ½ ½	3
	SECTION C		
25.	Olfactory indicator	1	
	(a) Colourless and Odourless gas is evolved with bubbles .	1	
	$Zinc + Acid \rightarrow Zinc Salt + H_2 \uparrow$ (or by using any example of acid e.g. HCl/ H ₂ SO ₄) (b) Brisk effervescence/ colourless and odourless gas is evolved. Sodium carbonate + Acid \longrightarrow Sodium salt of Acid + Water + Carbon dioxide \uparrow	1 1	
	(or by using any example of acid like HCl/H_2SO_4)	1	5

	OR		
	 Water of crystallization is the fixed number of water molecules present in one formula unit of a salt. Examples CuSO₄ .5H₂O Na₂CO₃.10 H₂O (or Any other) 	1 1⁄2 1⁄2	
	 Heat a few crystals of hydrated copper sulphate(bluecolour) in a dry boiling tube. Water droplets are seen in the boiling tube. Colour : The colour of copper sulphate changes to white . State : The blue crystal changes to white powder. 	1/2 1/2 1 1	
26.	 (a)(i) Ductility / Malleability / Lusture (Any two) (ii) Silver , Copper (iii) Gallium, Caesium 	$\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$	
	(b) $\begin{array}{c} Ca : \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \xrightarrow{\times \times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times \times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times \times} \begin{array}{c} & \\ & \\ \end{array} \xrightarrow{\times \times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times \times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times \times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times \times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times \times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times \times} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \xrightarrow{\times \times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times \times} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\times} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} & \\ \end{array} \end{array} \begin{array}{c} & \\ \end{array} \begin{array}{c} & \\ \end{array} \begin{array}{c} & \\ \end{array} \end{array} \begin{array}{c} & \\ \end{array} \begin{array}{c} & \\ \end{array} \end{array} \begin{array}{c} & \\ \end{array} \end{array} \begin{array}{c} & \\ \end{array} \begin{array}{c} & \\ \end{array} \end{array} \begin{array}{c} & \\ \end{array} \end{array} \begin{array}{c} & \\ \end{array} \begin{array}{c} & \\ \end{array} \end{array} \begin{array}{c} & \\ \end{array} $	2	5
27.	 (a)For providing energy for various metabolic processes / Formation of new cells / Repair of damaged or worn out cells & tissues / Developing resistance against diseases. (Any Two) (b) Peristaltic movement / Peristalsis/ Rhythmic contraction and relaxation of the muscles in the lining of alimentary canal. (c) Herbivores eat plant matter which is rich in cellulose and takes longer time to digest and hence longer small intestine. (d) The inner lining of the stomach will not be protected from the action of the acid /HCl 	1+1 1 1 1	5
28.	• Male germ-cell Pollen tube Female germ-cell		
	Labelling Diagram	1 ½ 1 ½	
	 Process of fertilization : Pollen tube is formed from the pollen grain. Fusion of male germ cell with female germ cell to form zygote. 	1	

	Ovary- Changes into fruit	1⁄2	
	Ovule- Changes into Seed	1⁄2	5
	OR		
	 (a) The period during adolescence is called puberty/age of males and females at which reproductive organs become functional. (b) (i) Testes – Production of sperms /Secretion of male sex hormone testosterone. 	1	
	 (ii) Seminal vesicle – secretes a fluid which makes the transport of sperms easier/ the fluid secreted gives nutrition to sperms. (iii) Vas deferens- carries the sperms to the seminal vesicle. (iv) Urethra- forms a common passage for both the sperms and urine. 	¹ ∕2 × 4	
	(Any one)(c) Because the sperm formation requires a lower temperature than the normal body temperature.(d) With the help of a long tail.	1 1	
29.	+HHF ()	2	
	(a) Three resistors are connected in parallel hence voltage across each is same i.e. 6V.		
	$I_1 = \frac{V}{R_1} = \frac{6}{10} = 0.6 \text{ A}$	1/2	
	$I_2 = \frac{V}{R_2} = \frac{6}{20} = 0.3 \text{ A}$	1⁄2	
	$I_3 = \frac{V}{R_3} = \frac{6}{30} = 0.2 \text{ A}$	1/2	
	b) I= I ₁ + I ₂ + I ₃ = 1.1 A	1⁄2	
	c) $R_{eff} = \frac{V}{I}$	1⁄2	
	$=\frac{6}{1.1}=5.4\Omega$	1⁄2	
	OR		
	$R_1 = R_2 = 15\Omega \qquad V = 6V$		

$R_{s} = R_{1} + R_{2} = 15\Omega + 15\Omega = 30\Omega$	1/2	
$I = \frac{V}{R_3} = \frac{6V}{30\Omega} = 0.2 \text{ A}$	1/2	
$\therefore P_1 = VI = 6V \times 0.2 A = 1.2 W$	1	
ii) In parallel		
$R_{p} = \frac{R_{1} \times R_{2}}{R_{1} + R_{2}} = \frac{15 \times 15}{15 + 15} = \frac{225}{30} = 7.5\Omega$	1⁄2	
$I = \frac{V}{R_p} = \frac{6V}{7.5\Omega} = 0.8 \text{ A}$	1⁄2	
$P_2 = VI = 6V \times 0.8 A = 4.8W$	1	
Ratio of power = $\frac{P_1}{P_2} = \frac{1.2W}{4.8W} = \frac{1}{4}$	1⁄2	
$\therefore P_1 : P_2 = 1 : 4$	1/2	5
$\therefore P_1: P_2 = 1:4$ 30 (a)Flemings' Left hand rule: Stretch the thumb, forefinger and middle finger of your left hand such that they are mutually perpendicular. If the forefinger points in the direction of magnetic field, middle finger in the direction of current, then the thumb will point in the direction	128	
of motion or force acting on the conductor.	11/2	
 (b) Three charactersticfeatures : Reverses direction periodically. Frequency of 50 Hz. Potential difference between live wire and netural wire is ab 	$\frac{1}{2} \times 3$	
 220V. (c) Fuse is a safety device used in a circuit (or appliance) to prev damage due to overloading/ short circuiting. 	ent ¹ / ₂	
 It protects the circuit (or appliance) by stopping the flow of a unduly high electric current / If current larger than the specif valueflows through the circuit , due to Joule's heating effect fuse wire melts and breaks the circuit. 	ied 1/	
(d) It provides a low resistance conducting path for the current and protects the user from electric shock due to leakage of current.	1	5