MARKING SCHEME-CLASS X SCIENCE (2019-20)			
QUESTION PAPER CODE :31/5/1			
S.NO	Value Points/Expected Answer	MARKS	TOTAL MARKS
	SECTION A		
1.	No charged particles/ions	1	1
2	All are metalloids/Shows the properties of metals and non-metals OR Properties of elements are a periodic function of their atomic number	1	1
3.	(a) Cells which convert solar energy to electrical energy/electricity (b) Voltage -0.5 to 1 V Electricity -0.7 W (c) India receives great amount of solar energy throughout the year. (d) Advantages :- No moving parts/require little maintenance /work quite satisfactorily without any focusing device/can be set up in remote and inaccessible areas. (Any Two)	$\begin{gathered} \hline 1 \\ 1 / 2 \\ 1 / 2 \\ 1 \\ 1 / 2+1 / 2 \end{gathered}$	4
4.	(a) Thyroid stimulating hormone. (b) It stimulates / regulates thyroid gland to produce thryroid hormone or thyroxine. (c) Because high and low TSH level may increase the chances of miscarriage. (d) Proper medication is required.	1	4
5.	(C) / remains unchanged	1	1
6.	(B) $/ 10^{-3} \mathrm{~A}$ and $10^{-6} \mathrm{~A}$ respectively	1	1
7.	(A) $/ 5 \mathrm{~A}$	1	1
8.	(D) /I , II and III OR (D) / Reduce	1	1
9.	(B)/ Chipko Movement	1	1
10.	(B) / Decomposition \& Redox	1	1
11.	(C)/ Green	1	1
12.	(B) $/ \mathrm{XY}_{2}$ OR (B) / (C) Group 16 and period $3 /$ Group 17 and period 3 (Note- Both are correct, marks to be awarded for any one)	1	1
13.	(iv) / (A) is false, but (R) is true	1	1
14.	(ii) / Both (A) and (R) are true, but (R) is not the correct explanation of the assertion(A)	1	1
SECTION B			
15.	(a) ' M ' is magnesium $/ \mathrm{Mg}$ ' N ' is Magnesium oxide / MgO (b) $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$	$\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 \\ \hline \end{gathered}$	

	(c) ' M ' undergoes oxidation because oxygen is added to it/ Loss of 2 electrons	$1 / 2+1 / 2$	3
16.	(a) Anode- Oxygen Cathode- Hydrogen (b) Because one molecule of water contains two atoms of hydrogen and one atom of oxygen/ $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$ (c) Electrolysis of water will not take place OR (a) Chemical Name - Sodium Carbonate decahydrate Common Name - Washing Soda Chemical Formula - $\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}$ (b) $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaHCO}_{3}$ $\begin{aligned} & 2 \mathrm{NaHCO}_{3} \xrightarrow{\text { Heat }} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\ & \mathrm{Na}_{2} \mathrm{CO}_{3}+10 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ (c) It helps in removing permanent hardness./ It forms insoluable Ca or Mg salts in the form of scum	1 1 1 $1 / 2 \times 3$ 1 $1 / 2$	3
17.	(a) Li, K (b) Mg (c) C (d) K (e) S (f) Al	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	3
18.	- Trophic level - Each step or level of a food chain forms a trophic level - Grass \rightarrow Insect \rightarrow Frog \rightarrow Snake/Hawk / Correct Diagram (any other) - Because it moves progressively through the various trophic levels and is no longer available to the previous level from producers to consumers. OR (i) Aquatic (ii) Abiotic (iii) Air/Water/Soil/Temperature /Non-living (iv) Living organism/plants and animals (v) Definition - All the interacting organisms in an area together with the non living constituents of the environment form an ecosystem /interaction between biotic and abiotic components.	1 1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1	3
19.	(a) Exchange of gases. (b) Because amount of oxygen dissolved in water is fairly low as compared to the air	1 1	

	(c) (i) Pyruvate (ii) Carbon dioxide	$1 / 2$	3
$\mathbf{2 0 .}$(a) Because Tallness is the dominant trait (b) The recessive character is expressed in the F_{2} generation when two copies of the recessive trait are present together/(tt). (c) In the F2 progeny, the dominant character is also expressed along with the recessive character in ratio of $3: 1$ respectively.	$1 / 2$		

	(c) - Excessive curvature of eye lens - elongation of eye ball (d) $P(D)=\frac{1}{f(m)}$ $P(D)=\frac{1}{-2.5(m)}=\frac{10}{-25}=\frac{2}{-5}=-0.4 D$ (Deduct $1 / 2$ mark if unit is not mentioned) OR (a) The Red colour is least scattered by fog or smoke, hence visible from a long distance. (b) Because in the absence of atomosphere there is no scattering of light. (c) Because of atmospheric refraction, the sun appears above the horizon even after actual sunset.	$1 / 2+1 / 2$ 1 1 1 1	3
	SECTION C		
25	For ore $\mathrm{X} \rightarrow$ Calcination/ Heating in limited supply of air/absence of air. $\mathrm{ZnCO}_{3}(\mathrm{~s}) \xrightarrow{\text { heat }} \mathrm{ZnO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})$ For Ore $\mathrm{Y} \rightarrow$ Roasting/Heating in excess of air. $2 \mathrm{ZnS}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\text { heat }} 2 \mathrm{ZnO}(\mathrm{~s})+2 \mathrm{SO}_{2}(\mathrm{~g})$ The metal oxide is reduced by using suitable reducing agent such as carbon. $\mathrm{ZnO}(\mathrm{~s})+\mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{Zn}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g})$ (Note - Any other example can be taken) OR (a)Figure - Impure copper is made the anode and thin strip of pure copper is made the cathode. - A solution of acidified copper sulphate is taken as electrolyte (Note : Labelled diagram is to be awarded full marks) On passing the current the pure metal from the anode dissolves into the electrolyte and equivalent amount of pure metal is deposited on the cathode. (b) - By filling the gaps with molten iron formed in the reaction of	$1 / 2$ 1 $1 / 2$ 1 1 1 1 $1 / 2$ $1 / 2$ 1	

	$\mathrm{Fe}_{2} \mathrm{O}_{3}$ with aluminum powder. - Thermit process/reaction - $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{s}) \rightarrow 2 \mathrm{Fe}(\mathrm{l})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+$ Heat	$\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 \end{gathered}$	5
26	(a) When two or more organic compounds have same molecular formula but different structural formula, then the compounds are called isomers and this phenomenon is called isomerism Butane Iso-Butane (b) Because ' X ' is an unsaturated carbon compound (c) Oxidising agent.	1 $1+1$ $\begin{aligned} & 1 \\ & 1 \end{aligned}$	5
27	(a) Because ventricles have to pump blood to various distant organs of the body (b) Because their energy requirement is low (c) In aquatic vertebrates the blood goes only once through the heart during one cycle while in terrerstrial vertebrates it goes through the heart two times during each cycle. (d) Because transpirational pull is greater during day time. (e) To prevent the backflow of the blood /blood flows only in one direction	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	5
28	(a) - $\mathrm{A} \rightarrow$ Ureter - $\mathrm{B} \rightarrow$ Seminal Vesicle - $\mathrm{C} \rightarrow$ Urethra - $\mathrm{D} \rightarrow$ Vas deferens (b) Testosterone : Role - Regulates the formation of sperms - Changes in appearance of boys at the time of puberty. (c) Function of ' B ' - Providing nutrition and transportation to sperms. Function of ' C ' - Serves as a common passage to both sperms and urine. OR (a) - Regeneration- the lost body part can be regenerated. - Budding - a complete small individual develops on the parent body during favourable conditions. - Spore Formation - Spores are covered with thick wall that helps to overcome unfavourable conditions. (b) Buds produced in the notches along the leaf margins develop into new plants. (c) Advantages : - Propagation of flowerless plants. - Genetically similar to the parent plant. - Plants raised by vegetative propagation bear flowers and fruits earlier than those produced from seeds.	$\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 \\ 1 / 2+1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2+1 / 2 \\ 1 / 2+1 / 2 \\ 1 / 2+1 / 2 \\ 1 \end{gathered}$	5

\begin{tabular}{|c|c|c|c|}
\hline 29 \& \begin{tabular}{l}
\[
I_{2}=\frac{P_{2}}{V}=\frac{10}{220}=\frac{1}{22} \mathrm{~A}
\]
\[
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}
\]
\[
=\left(\frac{10}{22}+\frac{1}{22}\right) \mathrm{A}=\frac{11}{22} \mathrm{~A}=0.5 \mathrm{~A}
\] \\
(b) (i) \\
(ii) \(\mathrm{Net} \mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}=2+3=5 \Omega\)
\[
\mathrm{I}=\frac{\mathrm{V}}{R_{\text {net }}}=\frac{5}{5}=1 \mathrm{~A}
\] \\
\(\therefore\) Voltage across \(3 \Omega\) resistor :
\[
\therefore \mathrm{V}=1 \times 3=3 \mathrm{~V}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
1
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 5 \\
\hline 30 \& (a) . \& 2 \& \\
\hline
\end{tabular}

