CBSE Class 10 Science Question Paper Solution 2020 Set 31/5/1 Series: JBB/5 SET-1 Paper Code No: 31/5/1 | | MARKING SCHEME-CLASS X SCIENCE (2019-20) | | | |------|--|--|----------------| | S.NO | QUESTION PAPER CODE :31/5/1 Value Points/Expected Answer | MARKS | TOTAL
MARKS | | | SECTION A | | | | 1. | No charged particles/ions | 1 | 1 | | 2 | All are metalloids/Shows the properties of metals and non-metals OR | | | | | Properties of elements are a periodic function of their atomic number | 1 | 1 | | 3. | (a) Cells which convert solar energy to electrical energy/electricity (b) Voltage – 0.5 to 1V Electricity –0.7W | 1
½
½ | | | | (c) India receives great amount of solar energy throughout the year. (d) Advantages: No moving parts/require little maintenance /work quite satisfactorily without any focusing device/can be set up in remote and | $\frac{72}{1}$ $\frac{1}{2} + \frac{1}{2}$ | | | | inaccessible areas. (Any Two) | | 4 | | 4. | (a) Thyroid stimulating hormone.(b) It stimulates / regulates thyroid gland to produce thryroid hormone or thyroxine. | 1 | | | | (c) Because high and low TSH level may increase the chances of miscarriage.(d) Proper medication is required. | 1
1 | 4 | | 5. | (C) / remains unchanged | 1 | 1 | | 6. | (B) $/ 10^{-3}$ A and 10^{-6} A respectively | 1 | 1 | | 7. | (A) / 5A | 1 | 1 | | 8. | (D) /I , II and III OR | | | | | (D) / Reduce | 1 | 1 | | 9. | (B)/ Chipko Movement | 1 | 1 | | 10. | (B) / Decomposition & Redox | 1 | 1 | | 11. | (C)/ Green | 1 | 1 | | 12. | (B) / XY ₂ OR (B) / (C) | | | | | Group 16 and period 3 /Group 17 and period 3 (Note- Both are correct, marks to be awarded for any one) | 1 | 1 | | 13. | (iv) / (A) is false, but (R) is true | 1 | 1 | | 14. | (ii) / Both (A) and (R) are true, but (R) is not the correct explanation of the assertion(A) | 1 | 1 | | | SECTION B | | T | | 15. | (a) 'M' is magnesium /Mg 'N' is Magnesium oxide / MgO | 1/ ₂ 1/ ₂ | | | | (b) $2Mg + O_2 \rightarrow 2MgO$ | 1 | | | | (c) 'M' undergoes oxidation because oxygen is added to it/ Loss of 2 electrons | 1/2 +1/2 | 3 | |-----|--|---|---| | 16. | (a) Anode-Oxygen Cathode- Hydrogen (b) Because one molecule of water contains two atoms of hydrogen and one atom of oxygen/ 2H₂O→2H₂+O₂ (c) Electrolysis of water will not take place | 1
1
1 | | | | OR (a) Chemical Name – Sodium Carbonate decahydrate Common Name – Washing Soda Chemical Formula - Na_2CO_3 . $10H_2O$ (b) $NaCl + H_2O + CO_2 + NH_3 \rightarrow NH_4Cl + NaHCO_3$ | ½×3 | | | | $2NaHCO_3 \xrightarrow{Heat} Na_2CO_3 + H_2O + CO_2$ | | | | | $Na_2CO_3 + 10H_2O \rightarrow Na_2CO_3 \cdot 10H_2O$ | 1 | | | | (c) It helps in removing permanent hardness./ It forms insoluable Ca or Mg salts in the form of scum | 1/2 | 3 | | 17. | (a) Li ,K
(b) Mg
(c) C
(d) K
(e) S
(f) Al | 1/2
1/2
1/2
1/2
1/2
1/2
1/2 | 3 | | 18. | Trophic level - Each step or level of a food chain forms a trophic level Grass → Insect → Frog →Snake/Hawk / Correct Diagram (any other) Because it moves progressively through the various trophic levels and is no longer available to the previous level from producers to consumers. | 1 1 | | | | OR | | | | | (i) Aquatic (ii) Abiotic (iii) Air/Water/Soil/Temperature /Non-living (iv) Living organism/plants and animals (v) Definition – All the interacting organisms in an area together with the non living constituents of the environment form an ecosystem /interaction between biotic and abiotic components. | 1/2
1/2
1/2
1/2
1/2 | 3 | | 19. | (a) Exchange of gases. (b) Because amount of oxygen dissolved in water is fairly low as | 1 | | | | compared to the air | 1 | | | | (a) (i) Drymyyoto | 1/2 | 3 | |-----|--|-----------|---| | | (c) (i) Pyruvate | | 3 | | 20 | (ii) Carbon dioxide | 1/2 | | | 20. | (a) Because Tallness is the dominant trait | 1 | | | | (b) The recessive character is expressed in the F_2 generation when two | 1 | | | | copies of the recessive trait are present together/(tt). | | | | | (c) In the F ₂ progeny, the dominant character is also expressed along | 1 | _ | | | with the recessive character in ratio of 3:1 respectively. | | 3 | | | | 1 | | | 21 | (a) | | | | | Secretions from seminal vesicle. | 1 | | | | • 22+X and 22+Y | 1/2 + 1/2 | | | | (b) (i) Female-XX | 1/2 | • | | | (ii) Male – XY | 1/2 | 3 | | 22 | (a) | | | | | | | | | | | | | | | The state of s | | | | | | | | | | | 1 | | | | P F C | 1 | | | | | | | | | | 100 | | | | | (3× | | | | (b) | | | | | | | | | | | | | | | P | 1 | | | | C The state of | (c) | F C | | | | | | 1 | | | | | | | | | (Note: Deduct ½ marks overall if no arrows are shown) | | 2 | | 22 | | | 3 | | 23 | (a) (i) Momentary deflection in the needle of the galvanometer to the left / | 1/- | | | | right. (ii) Momentary deflection in the needle of the galvenometer but in | 1/2 | | | | (ii) Momentary deflection in the needle of the galvanometer but in | 1/2 | | | | the opposite direction. (iii) No deflection | 1/2 | | | | (b) Electromagnetic induction. | 1/2 | | | | (c) Motion of a magnet with respect to coil induces an electric current in the | 72 | | | | coil which lasts so long as the motion is taking place / change in | 1 | 3 | | | magnetic field around a coil produces an induced current in it. | 1 | 5 | | 24 | (a) Myopia/Short sightedness | 1/2 | | | | (b) Concave/Diverging lens. | 1/2 | | | | (6) Concure Diverging lens. | / 2 | | | (c) • Excessive curva • elongation of ey (d) $P(D) = \frac{1}{f(m)}$ | · · · · · · · · · · · · · · · · · · · | 1/2+ 1/2 | | |---|---|----------|---| | ` ' | $\frac{1}{2.5(\text{m})} = \frac{10}{-25} = \frac{2}{-5} = -0.4\text{D}$ | 1 | | | (Deduct ½ mark if unit is no | t mentioned) OR | | | | (a) The Red colour is least s long distance. | scattered by fog or smoke, hence visible from a | 1 | | | (b) Because in the absence (c) Because of atmospheric | of atomosphere there is no scattering of light. refraction, the sun appears above the horizon | 1 | | | even after actual sunset. | | 1 | 3 | | | SECTION C | | | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | g in limited supply of air/absence of air. | 1/2 | | | $ZnCO_3(s) \xrightarrow{heat} ZnO(s) + CO_2(g)$ | | 1 | | | For Ore Y→ Roasting/Heating i | n excess of air. | 1/2 | | | $2ZnS(s) + 3O_2(g) \xrightarrow{\text{heat}} 2ZnO(s)$ | +2SO ₂ (g) | 1 | | | | sing suitable reducing agent such as carbon.
$+ C(s) \rightarrow Zn(s) + CO(g)$ | 1
1 | | | (Note – Any other example can (a)Figure | be taken)
OR | | | | Cathoole (Park topper) | Anada (Impure lapper) Acidifical Capper sulphati Solution: | 1 | | | Impure copper is made the cathode. | he anode and thin strip of pure copper is made | 1/2 | | | A solution of acidified c | opper sulphate is taken as electrolyte
m is to be awarded full marks) | 1/2 | | | | ure metal from the anode dissolves into the nt of pure metal is deposited on the cathode. | 1 | | | (b) • By filling the g | aps with molten iron formed in the reaction of | | | | | Fe ₂ O ₃ with aluminum powder. | 1/2 | | |----|--|------------------------------------|---| | | • Thermit process/reaction | 1/2 | | | | • $Fe_2O_3(s)+2Al(s) \rightarrow 2Fe(1)+Al_2O_3(s)+Heat$ | 1 | 5 | | 26 | (a) When two or more organic compounds have same molecular formula but different structural formula, then the compounds are called isomers and this phenomenon is called isomerism | 1 | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1+1 | | | | Butane Iso-Butane | | | | | (b) Because 'X' is an unsaturated carbon compound | 1 | | | | (c) Oxidising agent. | 1 | 5 | | 27 | (a) Because ventricles have to pump blood to various distant organs of the body (b) Because their energy requirement is low (c) In aquatic vertebrates the blood goes only once through the heart during one cycle while in terrerstrial vertebrates it goes through the heart two | 1
1 | | | | times during each cycle. | 1 | | | | (d) Because transpirational pull is greater during day time. | 1 | _ | | 28 | (e) To prevent the backflow of the blood /blood flows only in one direction (a) | n 1 | 5 | | | A→Ureter B→ Seminal Vesicle C→Urethra D→ Vas deferens (b) Testosterone : Role Regulates the formation of sperms | 1/2
1/2
1/2
1/2
1
1 | | | | Changes in appearance of boys at the time of puberty. (c) Function of 'B' Providing nutrition and transportation to sperms. | 1/2 | | | | Function of 'C' • Serves as a common passage to both sperms and urine. OR | 1/2 | | | | (a)Regeneration- the lost body part can be regenerated. | 1/2 + 1/2 | | | | Budding – a complete small individual develops on the parent body
during favourable conditions. | 1/2 + 1/2 | | | | Spore Formation – Spores are covered with thick wall that helps to
overcome unfavourable conditions. | 1/2 + 1/2 | | | | (b) Buds produced in the notches along the leaf margins develop into new plants. | 1 | | | | (c) Advantages: Propagation of flowerless plants. Genetically similar to the parent plant. Plants raised by vegetative propagation bear flowers and fruits earlier than those produced from seeds. | 1/2 + 1/2 | 5 | | | (Any two | o) | | | 29 | (a) $I_1 = \frac{P_1}{V}$ | 1/2 | | |--------|--|-----|----------| | | $I_1 = \frac{100 \text{ W}}{220 \text{ V}} = \frac{10}{22} \text{ A}$ | 1/2 | | | | $I_2 = \frac{P_2}{V} = \frac{10}{220} = \frac{1}{22} A$ | 1/2 | | | | $I = I_1 + I_2$ | | | | | $= \left(\frac{10}{22} + \frac{1}{22}\right) A = \frac{11}{22}A = 0.5 A$ | 1 | | | | (b) (i) 20 30 1 1 1 1 1 1 1 1 1 1 | 1/2 | | | | 1 1 1 (Series Combination) | 1/2 | | | | The state of s | | | | | (ii) Net $R=R_1+R_2=2+3=5 \Omega$ | | | | | $I = \frac{V}{R_{net}} = \frac{5}{5} = 1A$ | 1 | | | | \therefore Voltage across 3Ω resistor : | 17 | <u> </u> | | | $\therefore V = 1 \times 3 = 3V$ (a) . | 1/2 | 5 | | 30 | Refraction to the state of | 2 | | | 21/5/1 | | | | | (Note –Deduct ½ mark if arrows are not shown) | | | |--|---------------|---| | (b) $n_{ga} = \frac{\text{Speed of light in air}}{\text{Speed of light in glass}} = \frac{3 \times 10^8}{2 \times 10^8} = \frac{3}{2} = 1.5$ | 1/2, 1/2, 1/2 | | | (c) $f(m) = \frac{1}{P(D)}$ | 1/2 | | | $f = \frac{1}{P} = \frac{1}{-2.5D} = \frac{-10}{25D} = -0.4m$ | 1/2 + 1/2 | | | (Note –Deduct ½ marks if unit is not mentioned) OR | | | | (a) $f(m) = \frac{1}{P(D)}$ | 1/2 | | | $f = \frac{1}{-2.5D} = \frac{-10}{25D} = -0.4m = -40cm$ | 1 | | | f=-40 cm $v=-10 cm$ $u=?$ | | | | $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ | 1/2 | | | $\frac{1}{-10 \text{ cm}} - \frac{1}{u} = \frac{1}{-40 \text{ cm}}$ | 00 | | | $-\frac{1}{u} = \frac{1}{-40} + \frac{1}{10}$ | 1/2 | | | $=\frac{-1+4}{40}=\frac{3}{40}$ | | | | $\therefore u = -\frac{40}{3} = -13.3 \text{ cm}$ | 1 | | | (b) Since the power is –ve , the lens used is concave / diverging | 1/2 | | | F 8 A 10 | 1 | | | OA = v = -10cm; $OB = u = -13.3 cm$; $OF = f = -40cm$ | | 5 |