# CBSE Class 12 AUt g Question Paper Solution 2020 Set \*)/1/1

## **QUESTION PAPER CODE 65/1/1**

## **EXPECTED ANSWER/VALUE POINTS** SECTION - A

Question Numbers 1 to 20 carry 1 mark each.

Question Numbers 1 to 10 are multiple choice type questions. Select the correct option.

Q.No. **Marks** 

- 1. If A is a square matrix of order 3 and |A| = 5, then the value of |2A'| is
  - (A) 10
- **(B)** 10
- (C) -40
- **(D)** 40

**Ans:** (D) 40

1

- If A is a square matrix such that  $A^2 = A$ , then  $(I A)^3 + A$  is equal to 2.
  - **(A)** I

- **(B)** 0
- (C) I A
- **(D)** I + A

Ans: (A) I

1

- The principal value of  $\tan^{-1} \left( \tan \frac{3\pi}{5} \right)$ **3.** 
  - $(\mathbf{A}) \ \frac{2\pi}{5}$

- **(B)**  $\frac{-2\pi}{5}$  **(C)**  $\frac{3\pi}{5}$  **(D)**  $\frac{-3\pi}{5}$

**Ans:** (B) -

1

- If the projection of  $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$  on  $\vec{b} = 2\hat{i} + \lambda\hat{k}$ , is zero, then the value 4. of  $\lambda$  is
  - **(A)** 0
- **(B)** 1
- (C)  $\frac{-2}{3}$  (D)  $\frac{-3}{2}$

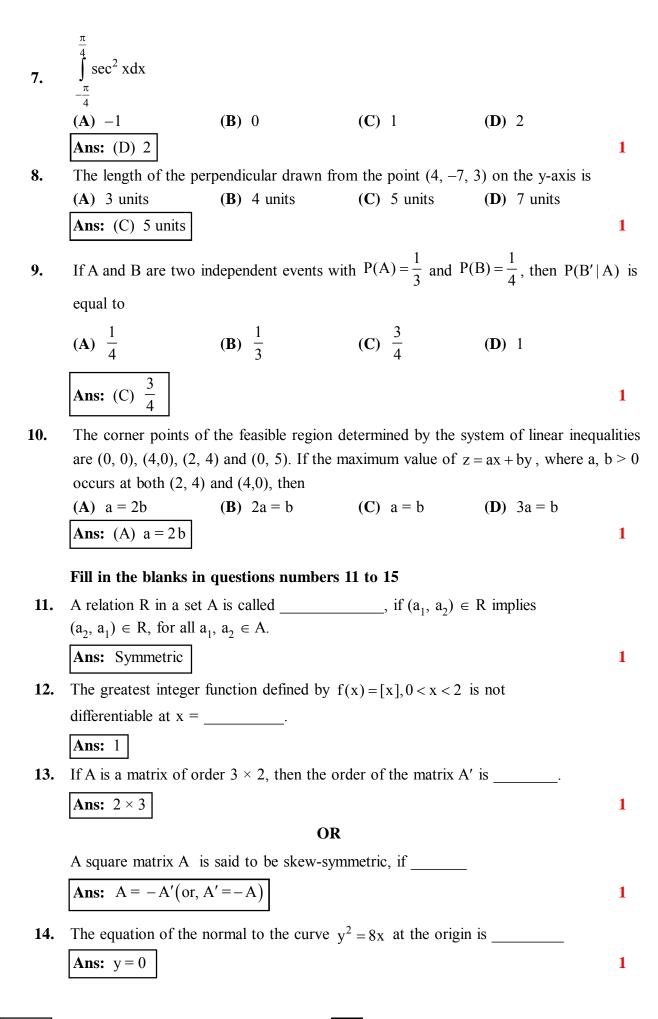
**Ans:** (C) -

1

- 5. The vector equation of the line passing through the point (-1, 5, 4) and perpendicular to the plane z = 0 is
  - (A)  $\vec{r} = -\hat{i} + 5\hat{j} + 4\hat{k} + \lambda(\hat{i} + \hat{j})$
- **(B)**  $\vec{r} = -\hat{i} + 5\hat{j} + (4 + \lambda)\hat{k}$

(C)  $\vec{r} = \hat{i} - 5\hat{j} - 4\hat{k} + \lambda\hat{k}$ 

**(D)**  $\vec{r} = \lambda \hat{k}$ 


**Ans:** (B)  $\vec{r} = -\hat{i} + 5\hat{j} + (4 + \lambda)\hat{k}$ 

1

- 6. The number of arbitrary constants in the particular solution of a differential equation of second order is (are)
  - $(\mathbf{A}) 0$
- **(B)** 1
- **(C)** 2
- **(D)** 3

**Ans:** (A) 0

1



**Ans:**  $12\pi$ 

15. The position vectors of two points A and B are  $\overrightarrow{OA} = 2\hat{i} - \hat{j} - \hat{k}$  and  $\overrightarrow{OB} = 2\hat{i} - \hat{j} + 2\hat{k}$ , respectively. The position vector of a point P which divides the line segment joining A and B in the ratio 2:1 is \_\_\_\_\_

**Ans:**  $2\hat{i} - \hat{j} + \hat{k}$ 

## Question numbers 16 to 20 are very short answer type questions

**16.** If  $A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 2 & 3 \\ 3 & 3 & 5 \end{bmatrix}$ , then find A (adj A).

**Ans:**  $A \cdot adj(A) = |A| I$  1/2

:. 
$$A \cdot adj(A) = 2I \text{ or } \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

17. Find  $\int x^4 \log x dx$ 

**Ans:**  $\int x^4 \cdot \log x \, dx = \log x \cdot \frac{x^5}{5} - \int \frac{1}{x} \cdot \frac{x^5}{5} \, dx$ 

$$= \frac{x^5 \cdot \log x}{5} - \frac{x^5}{25} + c$$
 1/2

OR

Find  $\int \frac{2x}{\sqrt[3]{x^2+1}} dx$ 

**Ans:** Let,  $x^2 + 1 = t$  : 2x dx = dt

$$\int \frac{2x}{\sqrt[3]{x^2 + 1}} \, dx = \int \frac{1}{\sqrt[3]{t}} \, dt = \int t^{-1/3} dt = \frac{3}{2} t^{2/3} + c$$

$$= \frac{3}{2} (x^2 + 1)^{2/3} + c$$
 1/2

**18.** Evaluate 
$$\int_{1}^{3} |2x-1| dx$$
.

Ans: 
$$\int_{1}^{3} 12x - 11 dx = \int_{1}^{3} (2x - 1) dx = \left[ \frac{1}{4} (2x - 1)^{2} \right]_{1}^{3}$$

$$= 6$$
1/2

19. Two cards are drawn at random and one-by-one without replacement from a well-shuffled pack of 52 playing cards. Find the probability that one card is red and the other is black.

**Ans:** 
$$\frac{^{26}\text{C}_1 \times ^{26}\text{C}_1}{^{52}\text{C}_2} = \frac{26}{51}$$

**20.** Find 
$$\int \frac{dx}{\sqrt{9-4x^2}}$$
.

**Ans:** 
$$\int \frac{dx}{\sqrt{9-4x^2}} = \int \frac{dx}{\sqrt{3^2-(2x)^2}}$$

$$=\frac{1}{2}\sin^{-1}\left(\frac{2x}{3}\right)+c$$

#### **SECTION-B**

Question numbers 21 to 26 carry 2 marks each.

21. Prove that 
$$\sin^{-1}(2x\sqrt{1-x^2}) = 2\cos^{-1}x, \frac{1}{\sqrt{2}} \le x \le 1$$

Ans: Put 
$$x = \cos \theta \Leftrightarrow \theta = \cos^{-1} x$$
  
L.H.S.  $= \sin^{-1} \left( 2x \sqrt{1 - x^2} \right)$ 

$$= \sin^{-1}(2\cos\theta \sin\theta) = \sin^{-1}(\sin 2\theta) = 2\theta = 2\cos^{-1}x = \text{R.H.S.}$$
1\frac{1}{2}

OR

Consider a bijective function  $f: R_+ \to (7, \infty)$  given by  $f(x) = 16x^2 + 24x + 7$ , where  $R_+$  is the set of all positive real numbers. Find the inverse function of f.

**Ans:** Let 
$$y = f(x) = 16x^2 + 24x + 7 = (4x + 3)^2 - 2$$

$$\Rightarrow f^{-1}(y) = x = \frac{\sqrt{y+2}-3}{4}$$

22. If  $x = at^2$ , y = 2at, then find  $\frac{d^2y}{dx^2}$ .

Ans: 
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t}$$

$$\frac{d^2y}{dx^2} = -\frac{1}{t^2} \cdot \frac{dt}{dx} = -\frac{1}{t^2} \cdot \frac{1}{2at} = -\frac{1}{2at^3}$$

23. Find the points on the curve  $y = x^3 - 3x^2 - 4x$  at which the tangent lines are parallel to the line 4x + y - 3 = 0.

Ans: 
$$\frac{dy}{dx} = -4 \implies 3x^2 - 6x - 4 = -4$$
  
 $\implies 3x(x-2) = 0 \therefore x = 0; x = 2$   
Points on the curve are  $(0, 0), (2, -12)$ 

**24.** Find a unit vector perpendicular to each of the vectors  $\vec{a}$  and  $\vec{b}$  where  $\vec{a} = 5\hat{i} + 6\hat{j} - 2\hat{k}$  and  $\vec{b} = 7\hat{i} + 6\hat{j} + 2\hat{k}$ .

**Ans:** 
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & 6 & -2 \\ 7 & 6 & 2 \end{vmatrix} = 24\hat{i} - 24\hat{j} - 12\hat{k}$$

Unit vector perpendicular to both 
$$\vec{a}$$
 and  $\vec{b}$  is  $\frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} - \frac{1}{3}\hat{k}$ 

OR

Find the volume of the parallelopiped whose adjacent edges are represented by  $2\vec{a}, -\vec{b}$  and  $3\vec{c}$ , where  $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$ ,  $\vec{b} = 3\hat{i} + 4\hat{j} - 5\hat{k}$  and  $\vec{c} = 2\hat{i} - \hat{j} + 3\hat{k}$ 

**Ans:** Volume of the parallelopiped = 
$$\begin{vmatrix} 2 & -2 & 4 \\ -3 & -4 & 5 \\ 6 & -3 & 9 \end{vmatrix}$$
  
=  $|-24| = 24$ 

**25.** Find the value of k so that the lines x = -y = kz and x - 2 = 2y + 1 = -z + 1 are perpendicular to each other.

**Ans:** The lines, 
$$\frac{x}{1} = \frac{y}{-1} = \frac{z}{\frac{1}{k}}$$
 and  $\frac{x-2}{1} = \frac{y+\frac{1}{2}}{\frac{1}{2}} = \frac{z-1}{-1}$ 

are perpendicular : 
$$1 - \frac{1}{2} - \frac{1}{k} = 0 \implies k = 2$$

**26.** The probability of finding a green signal on a busy crossing X is 30%. What is the probability of finding a green signal on X on two consecutive days out of three?

Ans: Probability of green signal on crossing 
$$X = \frac{30}{100} = \frac{3}{10}$$
Probability of not a green signal on crossing  $X = 1 - \frac{3}{10} = \frac{7}{10}$ 

Probability of a green signal on X on two concecutative days out of three

$$= \frac{3}{10} \times \frac{3}{10} \times \frac{7}{10} + \frac{7}{10} \times \frac{3}{10} \times \frac{3}{10} = \frac{63}{500}$$

## **SECTION-C**

## Question numbers 27 to 32 carry 4 marks each.

27. Let N be the set of natural numbers and R be the relation on  $N \times N$  defined by (a, b) R (c, d) iff ad = bc for all a, b, c, d  $\in$  N. Show that R is an equivalence relation.

**Ans:** Reflexive: For any  $(a, b) \in N \times N$ 

$$a \cdot b = b \cdot a$$
  
 $\therefore$  (a, b) R (a, b) thus R is reflexive

Symmetric: For  $(a, b), (c, d) \in N \times N$ 

(a, b) 
$$R(c, d) \Rightarrow a \cdot d = b \cdot c$$
  
 $\Rightarrow c \cdot b = d \cdot a$   
 $\Rightarrow (c, d) R(a, b) \therefore R \text{ is symmetric}$ 

$$1\frac{1}{2}$$

Transitive: For any (a, b), (c, d), (e, f),  $\in N \times N$  (a, b) R (c, d) and (c, d) R (e, f)  $\Rightarrow a \cdot d = b \cdot c \text{ and } c \cdot f = d \cdot e$   $\Rightarrow a \cdot d \cdot c \cdot f = b \cdot c \cdot d \cdot e \Rightarrow a \cdot f = b \cdot e$ 

$$\therefore$$
 (a, b) R (e, f),  $\therefore$  R is transitive  $1\frac{1}{2}$ 

:. R is an equivalance Relation

28. If 
$$y = e^{x^2 \cos x} + (\cos x)^x$$
, then find  $\frac{dy}{dx}$ .

**Ans.** Let 
$$u = (\cos x)^x \Rightarrow y = e^{x^2 \cdot \cos x} + u$$

$$\therefore \frac{dy}{dx} = e^{x^2 \cdot \cos x} (2x \cdot \cos x - x^2 \cdot \sin x) + \frac{du}{dx}$$

 $\log u = \log (\cos x)^x \implies \log u = x \cdot \log(\cos x)$ 

Differentiate w.r.t. "x"

$$\frac{1}{u}\frac{du}{dx} = \log(\cos x) - x \tan x \Rightarrow \frac{du}{dx} = (\cos x)^{x} \left\{ \log(\cos x) - x \tan x \right\}$$

Therefore,

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \mathrm{e}^{\mathrm{x}^2 \cdot \cos x} \left( 2\mathrm{x} \cdot \cos x - \mathrm{x}^2 \cdot \sin x \right) + (\cos x)^{\mathrm{x}} \left\{ \log(\cos x) - \mathrm{x} \tan x \right\}$$

**29.** Find  $\int \sec^3 x dx$ .

Ans. 
$$\int \sec^3 x dx = \int \sec x \cdot \sec^2 x dx = \int \sqrt{1 + \tan^2 x} \cdot \sec^2 x dx$$
 1\frac{1}{2}

(Put tan x = t; \sec^2 x dx = dt)

=  $\int \sqrt{1 + t^2} dt$ 

=  $\frac{t}{2} \sqrt{1 + t^2} + \frac{1}{2} \log |t + \sqrt{1 + t^2}| + c$ 

=  $\frac{\sec x \cdot \tan x}{2} + \frac{1}{2} \log |\tan x + \sec x| + c$ 

1/2

**30.** Find the general solution of the differential equation  $ye^y dx = (y^3 + 2xe^y)dy$ .

Ans. 
$$y \cdot e^y dx = (y^3 + 2xe^y) dy \implies y \cdot e^y \frac{dy}{dx} = y^3 + 2xe^y$$
  

$$\therefore \frac{dx}{dy} - \frac{2}{y}x = y^2 \cdot e^{-y}$$

I.F. (Integrating factor) = 
$$e^{-2\int \frac{1}{y} dy} = e^{-2\log y} = e^{\log \frac{1}{y^2}} = \frac{1}{y^2}$$

:. Solution is

$$x \cdot \frac{1}{y^2} = \int y^2 \cdot e^{-y} \cdot \frac{1}{y^2} dy + c = \int e^{-y} dy + c$$
 1

$$\Rightarrow \frac{x}{y^2} = -e^{-y} + c \text{ or } x = -y^2 e^{-y} + cy^2$$

OR

Find the particular solution of the differential equation

$$x \frac{dy}{dx} = y - x \tan\left(\frac{y}{x}\right)$$
, given that  $y = \frac{\pi}{4}$  at  $x = 1$ .

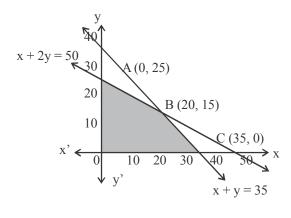
**Ans.** The differential equation can be written as:

$$\frac{dy}{dx} = \frac{y}{x} - \tan \frac{y}{x}$$
, let  $y = vx$  :  $\frac{dy}{dx} = v + x \frac{dv}{dx}$ 

$$\Rightarrow v + x \frac{dv}{dx} = v - \tan v \Rightarrow \cot v \, dv = -\frac{1}{x} dx$$

Integrate both sides

$$\log \sin v = -\log |x| + \log c \Rightarrow \log \sin \frac{y}{x} = \log \frac{c}{x}$$


$$\Rightarrow x \cdot \sin \frac{y}{x} = c$$
, Put  $y = \frac{\pi}{4}$  and  $x = 1$ 

$$\Rightarrow \sin \frac{\pi}{4} = c \text{ or } c = \frac{1}{\sqrt{2}}$$

$$\therefore$$
 Particular solution is  $x \cdot \sin\left(\frac{y}{x}\right) = \frac{1}{\sqrt{2}}$ 

31. A furniture trader deals in only two items – chairs and tables. He has ₹ 50,000 to invest and a space to store at most 35 items. A chair costs him ₹ 1000 and a table costs him ₹2000. The trader earns a profit of ₹150 and ₹250 on a chair and table, respectively. Formulate the above problem as an LPP to maximise the profit and solve it graphically.

Ans.



Let No. of chairs = x, No. of tables = y

Then L.P. P. is:

Maximize (Profit) : 
$$Z = 150x + 250y$$

1

1

 $1\frac{1}{2}$ 

1/2

1/2

Subject to : 
$$x + y \le 35$$
  
 $1000x + 2000y \le 50000 \Rightarrow x + 2y \le 50$ 

$$x, y \ge 0$$

Value of Z Corner: ₹ 6250 A(0, 25)₹ 6750 (Max) B(20, 15)C(35, 0)₹ 5250 ∴ Max (z) = ₹6750

Number of chairs = 
$$20$$
, Tables =  $15$ 

32. There are two bags, I and II. Bag I contains 3 red and 5 black balls and Bag II contains 4 red and 3 black balls. One ball is transferred randomly from Bag I to Bag II and then a ball is drawn randomly from Bag II. If the ball so drawn is found to be black in colour, then find the probability that the transferred ball is also black.

**Ans.**  $E_1$  = Event that the ball transferred from Bag I is Black

$$E_2$$
 = Event that the ball transfered from Bag I is Red

A = Event that the ball drawn from Bag II is Black

$$P(E_1) = \frac{5}{8}; P(E_2) = \frac{3}{8}; P(\frac{A}{E_1}) = \frac{4}{8} = \frac{1}{2}; P(\frac{A}{E_2}) = \frac{3}{8}$$

Required Probability:

$$P\left(\frac{E_{1}}{A}\right) = \frac{P(E_{1}) \cdot P\left(\frac{A}{E_{1}}\right)}{P(E_{1}) \cdot P\left(\frac{A}{E_{1}}\right) + P(E_{2}) \cdot P\left(\frac{A}{E_{2}}\right)} = \frac{\frac{5}{8} \cdot \frac{1}{2}}{\frac{5}{8} \cdot \frac{1}{2} + \frac{3}{8} \cdot \frac{3}{8}} = \frac{20}{29}$$

$$1\frac{1}{2}$$

OR

An urn contains 5 red, 2 white and 3 black balls. Three balls are drawn, one-by-one, at random without replacement. Find the probability distribution of the number of white balls. Also, find the mean and the variance of the number of white balls drawn.

**Ans.** Let X = No. of white balls = 0, 1, 2

X: 0 1 2 1/2  
P(X): 
$$\frac{8}{10} \times \frac{7}{9} \times \frac{6}{8} = \frac{7}{15}$$
  $3 \times \frac{8}{10} \times \frac{7}{9} \times \frac{2}{8} = \frac{7}{15}$   $3 \times \frac{2}{10} \times \frac{1}{9} \times \frac{8}{8} = \frac{1}{15}$  1\frac{1}{2}  
X \cdot P(X): 0 \frac{7}{15} \frac{2}{15} 1/2

$$X^{2}P(X):$$
 0  $\frac{7}{15}$   $\frac{4}{15}$ 

Mean = 
$$\sum XP(X) = \frac{9}{15} = \frac{3}{5}$$

Variance = 
$$\sum X^2 P(x) - \left[\sum X P(X)^2\right] = \frac{11}{15} - \left[\frac{3}{5}\right]^2 = \frac{28}{75}$$

## **SECTION-D**

Question numbers 33 to 36 carry 6 marks each.

33. If 
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 3 & 2 & -2 \\ 2 & -1 & 1 \end{bmatrix}$$
, then find  $A^{-1}$  and use it to solve the

following system of the equations:

$$x + 2y - 3z = 6$$
$$3x + 2y - 2z = 3$$

$$2x - y + z = 2$$

**Ans.** 
$$|A| = 7$$
;  $adj(A) = \begin{bmatrix} 0 & 1 & 2 \\ -7 & 7 & -7 \\ -7 & 5 & -4 \end{bmatrix}$ ;  $A^{-1} = \frac{1}{|A|} adj A = \frac{1}{7} \begin{bmatrix} 0 & 1 & 2 \\ -7 & 7 & -7 \\ -7 & 5 & -4 \end{bmatrix}$   $1 + 1\frac{1}{2} + \frac{1}{2}$ 

The system of equations in Matrix form can be written as:

$$A \cdot X = B$$
, where  $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ ;  $B = \begin{bmatrix} 6 \\ 3 \\ 2 \end{bmatrix}$ 

$$X = A^{-1}B \implies \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 0 & 1 & 2 \\ -7 & 7 & -7 \\ -7 & 5 & -4 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 2 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 7 \\ -35 \\ -35 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \\ -5 \end{bmatrix}$$

$$\therefore x = 1, y = -5, z = -5$$

OR

Using properties of determinants, prove that

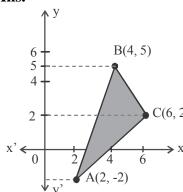
$$\begin{vmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)$$

Ans.  $\begin{vmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{vmatrix}$ 

$$= \begin{vmatrix} b^2 + c^2 & a^2 & bc \\ c^2 + a^2 & b^2 & ca \\ a^2 + b^2 & c^2 & ab \end{vmatrix}$$
  $(C_1 \to C_1 - 2C_3)$ 

$$= \begin{vmatrix} a^2 + b^2 + c^2 & a^2 & bc \\ a^2 + b^2 + c^2 & b^2 & ca \\ a^2 + b^2 + c^2 & c^2 & ab \end{vmatrix}$$
  $(C_1 \to C_1 + C_2)$  1

$$= \begin{vmatrix} a^2 + b^2 + c^2 & a^2 & bc \\ 0 & b^2 - a^2 & ca - bc \\ 0 & c^2 - a^2 & ab - bc \end{vmatrix} \qquad (R_2 \to R_2 - R_1, R_3 \to R_3 - R_1)$$
2


$$= (b-a)(c-a) \begin{vmatrix} a^2 + b^2 + c^2 & a^2 & bc \\ 0 & b+a & -c \\ 0 & c+a & -b \end{vmatrix}$$

Expand along C<sub>1</sub>

$$= (a^{2} + b^{2} + c^{2})(b-a)(c-a)(-b^{2} - ab + c^{2} + ac)$$

$$= (a-b)(b-c)(c-a)(a+b+c)(a^{2} + b^{2} + c^{2})$$
1

34. Using integration, find the area of the region bounded by the triangle whose vertices are (2, -2), (4,5) and (6,2).



Let 
$$A(2, -2)$$
;  $B(4, 5)$ ;  $C(6, 2)$ 

Equations of the lines

AB: 
$$x = \frac{2}{7}(y+9)$$

BC: 
$$x = -\frac{2}{3}(y-11)$$
AC:  $x = y + 4$ 

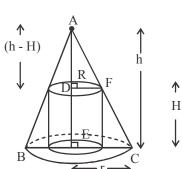
$$AC: x = y + 4$$

$$1\frac{1}{2}$$

2

Correct graph 1/2

$$ar(\Delta ABC) = \int_{-2}^{2} (y+4)dy + \left(\frac{-2}{3}\right) \int_{2}^{5} (y-11)dy - \int_{-2}^{5} \frac{2}{7} (y+9) dy$$


$$=\frac{1}{2}\Big[(y+4)^2\Big]_{-2}^2 - \frac{1}{3}\Big[(y-11)^2\Big]_{2}^5 - \frac{1}{7}\Big[(y+9)^2\Big]_{-2}^5$$

$$= 16 + 15 - 21 = 10$$
 1/2

**35.** Show that the height of the right circular cylinder of greatest volume which can be inscribed in a right circular cone of height h and radius r is one-third of the

height of the cone, and the greatest volume of the cylinder is  $\frac{4}{9}$  times the volume of the cone.

Ans.



Let H = Height of cylinder

R = Radius of cylinder

Volume of cone = 
$$\frac{\pi}{3}$$
 r<sup>2</sup>h

V = Volume of cylinder = 
$$\pi R^2 H$$
 1/2

$$\Delta ADF \sim \Delta AEC \implies \frac{h-H}{h} = \frac{R}{r} \implies R = \frac{r}{R} (h-H)$$
 1

$$\therefore V = \pi \cdot H \cdot \frac{r^2}{h^2} (h - H)^2 = \frac{\pi r^2}{h^2} (H^3 - 2hH^2 + Hh^2)$$

$$V'(H) = \frac{\pi r^2}{h^2} (3H^2 - 4hH + h^2), V'(h) = 0 \Rightarrow H = \frac{h}{3}$$
 1+1

$$V''(H) = \frac{\pi r^2}{h^2} (6H - 4h), V'' \left( H = \frac{h}{3} \right) = \frac{\pi r^2}{h^2} (-2h) < 0$$
 1/2

$$\therefore$$
 V is max iff  $H = \frac{h}{3}$  and  $R = \frac{2r}{3}$ 

$$\frac{\text{Volume of cylinder}}{\text{Volume of cone}} = \frac{3\pi R^2 H}{\pi r^2 h} = 3 \cdot \frac{4r^2}{9} \cdot \frac{h}{3} \cdot \frac{1}{r^2 h} = \frac{4}{9}$$

36. Find the equation of the plane that contains the point A(2,1,-1) and is perpendicular to the line of intersection of the planes 2x + y - z = 3 and x + 2y + z = 2. Also find the angle between the plane thus obtained and the y-axis.

**Ans.** Let equation of the required plane be:

$$a(x-2) + b(y-1) + c(z+1) = 0$$
  $1\frac{1}{2}$ 

Also: 2a + b - c = 0a + 2b + c = 0

Solving: 
$$\frac{a}{3} = \frac{b}{-3} = \frac{c}{3} = k \implies a = 3k, b = -3k, c = 3k$$

 $\therefore$  Equation of plane is : 3k(x-2)-3k(y-1)+3k(z+1)=0

$$\Rightarrow x - y + z = 0$$

Let angle between y-axis and plane =  $\theta$ 

then, 
$$\sin \theta = \left| \frac{0 - 1 + 0}{\sqrt{1 + 1 + 1}} \right| = \left| \frac{-1}{\sqrt{3}} \right| \Rightarrow \theta = \sin^{-1} \left( \frac{1}{\sqrt{3}} \right)$$

#### OR

Find the distance of the point P(-2, -4, 7) from the point of intersection Q of the line  $\vec{r} = (3\hat{i} - 2\hat{j} + 6\hat{k}) + \lambda(2\hat{i} - \hat{j} + 2\hat{k})$  and the plane  $\vec{r} \cdot (\hat{i} - \hat{j} + \hat{k}) = 6$ . Also write the vector equation of the line PQ.

Ans. General point on line is:  $\vec{r} = (3 + 2\lambda)\hat{i} + (-2 - \lambda)\hat{j} + (6 + 2\lambda)\hat{k}$ 

For the point of intersection:

$$[(3+2\lambda)\hat{i} + (-2-\lambda)\hat{j} + (6+2\lambda)\hat{k}] \cdot (\hat{i} - \hat{j} + \hat{k}) = 6$$

$$\Rightarrow 3 + 2\lambda + 2 + \lambda + 6 + 2\lambda = 6 \Rightarrow \lambda = -1$$

$$\therefore Q(\hat{i} - \hat{j} + 4\hat{k}) = Q(1, -1, 4)$$

$$PQ = 3\sqrt{3}$$
, equation of the line  $PQ$ :  $\vec{r} = -2\hat{i} - 4\hat{j} + 7\hat{k} + \mu(3\hat{i} + 3\hat{j} - 3\hat{k})$  1+1