XII MATHEMATICS

QUESTION PAPER CODE 65/4/1

EXPECTED ANSWER/VALUE POINTS

6	The two lines $x = ay + b$, $z = cy + d$; and $x = a'y + b'$, $z = c'y + d'$ are perpendicular to	
	each other, if	
	(a) $\frac{a}{a} + \frac{c}{c} = 1$ (b) $\frac{a}{a} + \frac{c}{c} = -1$ (c) $aa + cc' = 1$ (d) $aa + cc' = -1$	
	Answer:	
	(d)aa' + cc' = -1	1
7	The two planes $x - 2y + 4z = 10$ and $18x + 17y + kz = 50$ are perpendicular, if k is	
	equal to	
	(a) -4 (b) 4 (c) 2 (d) -2	
	(b)4	
		1
8	In a LPP, if the objective function $z = ax + by$ has the same maximum value on two	
	corner points of a feasible region, then the number of points at which z_{max} occurs is	
	(a) 0 (b) 2 (c) finite (d) infinite	
	Answer:	
		1
9	From the set $\{1, 2, 3, 4, 5\}$, two numbers a and b $(a \neq b)$ are chosen at random. The	5
	probability that $\frac{a}{-}$ is an integer is	
	(a) $\frac{1}{3}$ (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{5}{5}$	
	Answer:	
	$(b)^{\frac{1}{2}}$	1
		1
10	A bag contains 3 white, 4 black and 2 red balls. If 2 balls are drawn at random (without replacement), then the probability that both the balls are white is	
	(a) $\frac{1}{1}$ (b) $\frac{1}{1}$ (c) $\frac{1}{1}$ (d) $\frac{1}{1}$	
	(a) 18 36 12 24	
	Answer:	
	$(c)\frac{1}{12}$	1
In Q. N	Nos. 11 to 15, fill in the blanks with correct word/sentence:	
11	If $f: R \to R$ be given by $f(x) = (3 - x^3)^{\frac{1}{3}}$, then for $f(x) = (3 - x^3)^{\frac{1}{3}}$.	
	Answer:	
	x	1
12	If $\begin{bmatrix} x+y & 7 \end{bmatrix} = \begin{bmatrix} 2 & 7 \end{bmatrix}$ then $x y = \begin{bmatrix} x+y & 7 \end{bmatrix} = \begin{bmatrix} 2 & 7 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 9 & x-y \end{bmatrix}^{-} \begin{bmatrix} 9 & 4 \end{bmatrix}, \text{ uch } x, y = \underline{\qquad}.$	
	Answer: - 3	1
13	The number of points of discontinuity of f defined by $f(x) = x - x+1 $ is	

65/4/1

	Answer: Zero	1
14	The slope of the tangent to the curve $y = x^3 - x$ at the point (2,6) is	
	Answer:	1
	OR	
	The rate of change of the area of a circle with respect to its radius r , when $r=3$ cm, is	
	·	
	Answer:	1
	$6\pi \mathrm{cm}^2/\mathrm{cm}$	1
15	If \vec{a} is a non-zero vector, then $(\vec{a}.\hat{i})i + (\vec{a}.\hat{j})j + (\vec{a}.\hat{k})k$ equals	
	Answer:	1
	ā	1
	The projection of the vector $i - j$ on the vector $i + j$ is	
		1
0.11		
Q. 16 t	o 20 are very short answer questions.	
16	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	
	Find ad_jA , if $A = \begin{bmatrix} 4 & 3 \end{bmatrix}$.	
	Answer:	
	$\begin{vmatrix} adjA = \begin{vmatrix} 3 & 1 \\ 1/2 \end{vmatrix}$ (1/2 mark for any two correct co-factors)	1
17		
17	Find $\int \frac{2^{x+1}-5^{x-1}}{10^x} dx$	
	Answer:	
	$f(2(z-x)) = \frac{1}{2}(z-x)$	
	$I = \int \left(2(5^{-x}) - \frac{1}{5}(2^{-x}) \right) dx = -\frac{1}{5^x \log 5} + \frac{1}{5(2^x) \log 2} + C$	1
18	$\sum_{n=1}^{2\pi} \int a dn$	
	Evaluate $\int_{0}^{1} \sin x dx$	
	Answer:	
	$\frac{\pi}{2}$	
	$I = 4 \int \sin x dx = 4$	$\frac{1}{2} + \frac{1}{2}$
19	$\frac{dx}{dx} = \frac{dx}{dx} + \frac{\pi}{dx}$	
	If $\int_{0}^{\infty} \frac{dx}{1+4x^2} = \frac{\pi}{8}$, then find the value of a.	
	U	
	Answer:	

	$\int_{a}^{a} \frac{dx}{(x-x)^2} = \frac{\pi}{2}$	
	$\int_{0}^{3} (2x)^{2} + 1 = 8$	
	$\Rightarrow \frac{1}{2} \left[\tan^{-1}(2x) \right]_0^a = \frac{\pi}{8}$	$\frac{1}{2}$
	$\Rightarrow a = \frac{1}{2}$	4
	2	$\frac{1}{2}$
	Find $\int \frac{dx}{\sqrt{x+x}}$	2
	Answer:	
	Put $\sqrt{x} = t$	
	$\therefore \int \frac{dx}{\sqrt{x+x}} = 2\log\left(1+\sqrt{x}\right) + C$	$\frac{1}{2}$
		$\frac{1}{2}$
20	Show that the function $y = ax + 2a^2$ is a solution of the differential equation	2
	Show that the function $y = dx + 2d$ is a solution of the uniformal equation $2\left(\frac{dy}{dx}\right)^2 + x\left(\frac{dy}{dx}\right) - y = 0.$	
	Answer:	2
	$y = ax + 2a^2 \Longrightarrow \frac{dy}{dx} = a$	1
	$dx + 2d \rightarrow dx$	$\overline{2}$
	$LHS = 2\left(\frac{dy}{dx}\right)^2 + x\left(\frac{dy}{dx}\right) - y$	1
	$=2(a)^{2}+x(a)-(ax+2a^{2})=0=RHS$	$\frac{1}{2}$
	SECTION – B	
Q. Nos	21 to 26 carry 2 marks each.	
21	Check if the relation R on the set $A = \{1, 2, 3, 4, 5, 6\}$ defined as	
	$R = \{(x, y): y \text{ is divisible by } x\}$ is (i) symmetric (ii) transitive.	
	Answer:	
	(i) As $(2,4) \in R$ but $(4,2) \notin R \Rightarrow R$ is not symmetric.	1
	(ii) Let $(a, b) \in R$ and $(b, c) \in R$	
	$\Rightarrow b = \lambda a \text{ and } c = \mu b$	
	Now, $c = \mu b = \mu(\lambda a) \Rightarrow (a, c) \in \mathbb{R}$	1
	\Rightarrow <i>R</i> is transitive.	
	Prove that: $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right) = \frac{9}{4}\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$	
	Answer:	

	LHS = $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3}$	
	$=\frac{9}{4}\left[\frac{\pi}{2}-\sin^{-1}\frac{1}{3}\right]=\frac{9}{4}\cos^{-1}\frac{1}{3}$	1
	$=\frac{9}{4}\sin^{-1}\left(\sqrt{1-\left(\frac{1}{3}\right)^{2}}\right)=\frac{9}{4}\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)=RHS$	1
22	Find the value of $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$, if $x = \cos \theta - \cos 2\theta$, $y = \sin \theta - \sin 2\theta$.	
	Answer: $\frac{dx}{d\theta} = -\sin\theta + 2\sin 2\theta$	$\frac{1}{2}$
	$\frac{dy}{d\theta} = \cos\theta - 2\cos 2\theta$	$\frac{1}{2}$
	$\therefore \frac{dy}{dx} = \frac{\cos\theta - 2\cos 2\theta}{-\sin\theta + 2\sin 2\theta}$	$\frac{1}{2}$
	$\therefore \left. \frac{dy}{dx} \right _{\theta = \frac{\pi}{2}} = \sqrt{3}$	$\frac{1}{2}$
23	Show that the function f defined by $f(y) = (y - 1)e^{x} + 1$ on increasing function for	2
23	show that the function <i>f</i> defined by $f(x) = (x - 1)e^{-x} + 1$ an increasing function for all $x > 0$.	
	Answer: $f'(x) = xe^x$	1
		$\frac{1}{1}$
	Now $x > 0$ and $e^x > 0$ for all x	2
	$\therefore f'(x) > 0 \Rightarrow f$ is an increasing function.	$\frac{1}{2}$
24	Find $ \vec{a} $ and $ \vec{b} $, if $ \vec{a} = 2 \vec{b} $ and $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 12$.	
	Answer: $(\vec{a} + \vec{b})(\vec{a} - \vec{b}) = 12 \Rightarrow \vec{a} ^2 - \vec{b} ^2 = 12$	
	$\Rightarrow 3\left \vec{b}\right ^2 = 12 \Rightarrow \left \vec{b}\right = 2$	1
	Now, $ \vec{a} ^2 = 12 + \vec{b} ^2 = 16 \Rightarrow \vec{a} = 4$	1
	OR	
	Find the unit vector perpendicular to each of the vectors $\vec{a} = 4\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} - \hat{j} + 2\hat{k}$	
	Answer:	

	$\vec{a} \times \vec{b} = 7\hat{i} - 6\hat{j} - 10\hat{k}$ and $\left \vec{a} \times \vec{b}\right = \sqrt{185}$	$1 + \frac{1}{2}$
	Required unit vector = $\frac{1}{\sqrt{185}} \left(7\hat{i} - 6\hat{j} - 10\hat{k} \right)$	2
	V105	$\frac{1}{2}$
25	Find the equation of the plane with intercept 3 on the y-axis and parallel to xz –	
	Answer:	
	Let required plane parallel to xz -plane is $y = k$	1
	Given y-intercept is $3 \Rightarrow k = 3$	1
26	$\Rightarrow \text{Equation of required plane is } y = 3$	1
20	Find $\left[P(B A)+P(A B)\right]$, if $P(A)=\frac{3}{10}$, $P(B)=\frac{2}{5}$ and $P(A\cup B)=\frac{3}{5}$.	
	Answer:	
	$P(A \cap B) = \frac{3}{10} + \frac{2}{5} - \frac{3}{5} = \frac{1}{10}$	$\frac{1}{2}$
	Now, $P(B A) + P(A B)$	
	$P(A \cap B) \mid P(A \cap B)$	1
	$= \frac{1}{P(A)} + \frac{1}{P(B)}$	$\frac{1}{2}$
	$=\frac{1}{1}+\frac{1}{2}=\frac{7}{2}$	1
	3 4 12	1
SECTION – C		
Q. Nos	. 27 to 32 carry 4 marks each.	
Q. Nos	. 27 to 32 carry 4 marks each. Prove that the relation <i>R</i> on <i>Z</i> , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an	
Q. Nos	. 27 to 32 carry 4 marks each. Prove that the relation <i>R</i> on <i>Z</i> , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation.	
Q. Nos. 27	Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive	
Q. Nos. 27	Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive $x - x = 0$, for every $x \in Z$ is divisible by $5 \Rightarrow (x, x) \in R$	1
Q. Nos. 27	27 to 32 carry 4 marks each. Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive $x - x = 0$, for every $x \in Z$ is divisible by $5 \Rightarrow (x, x) \in R$ For symmetric	1
Q. Nos	27 to 32 carry 4 marks each. Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive $x - x = 0$, for every $x \in Z$ is divisible by $5 \Rightarrow (x, x) \in R$ For symmetric $(x, y) \in R \Rightarrow x - y$ is divisible by $5 \Rightarrow y - x$ is divisible by 5	1
Q. Nos. 27	Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive $x - x = 0$, for every $x \in Z$ is divisible by $5 \Rightarrow (x, x) \in R$ For symmetric $(x, y) \in R \Rightarrow x - y$ is divisible by $5 \Rightarrow y - x$ is divisible by $5 \Rightarrow (y, x) \in R$	1
Q. Nos	Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive $x - x = 0$, for every $x \in Z$ is divisible by $5 \Rightarrow (x, x) \in R$ For symmetric $(x, y) \in R \Rightarrow x - y$ is divisible by $5 \Rightarrow y - x$ is divisible by $5 \Rightarrow (y, x) \in R$ For transitive	1
Q. Nos . 27	Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive $x - x = 0$, for every $x \in Z$ is divisible by $5 \Rightarrow (x, x) \in R$ For symmetric $(x, y) \in R \Rightarrow x - y$ is divisible by $5 \Rightarrow y - x$ is divisible by $5 \Rightarrow (y, x) \in R$ For transitive Let $(x, y) \in R$ and $(y, z) \in R$	1
Q. Nos .	27 to 32 carry 4 marks each. Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive $x - x = 0$, for every $x \in Z$ is divisible by $5 \Rightarrow (x, x) \in R$ For symmetric $(x, y) \in R \Rightarrow x - y$ is divisible by $5 \Rightarrow y - x$ is divisible by $5 \Rightarrow (y, x) \in R \Rightarrow R$ is symmetric. For transitive Let $(x, y) \in R$ and $(y, z) \in R$ $(x, y) \in R \Rightarrow x - y = 5\lambda$ (i)	1
Q. Nos. 27	27 to 32 carry 4 marks each. Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive $x - x = 0$, for every $x \in Z$ is divisible by $5 \Rightarrow (x, x) \in R$ For symmetric $(x, y) \in R \Rightarrow x - y$ is divisible by $5 \Rightarrow y - x$ is divisible by $5 \Rightarrow (y, x) \in R$ For transitive Let $(x, y) \in R$ and $(y, z) \in R$ $(x, y) \in R \Rightarrow x - y = 5\lambda$ (i) $(y, z) \in R \Rightarrow y - z = 5\mu$ (ii)	1 1 2
Q. Nos. 27	A 27 to 32 carry 4 marks each. Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive $x - x = 0$, for every $x \in Z$ is divisible by $5 \Rightarrow (x, x) \in R$ For symmetric $(x, y) \in R \Rightarrow x - y$ is divisible by $5 \Rightarrow y - x$ is divisible by $5 \Rightarrow (y, x) \in R \Rightarrow R$ is symmetric. For transitive Let $(x, y) \in R \text{ and } (y, z) \in R$ $(x, y) \in R \Rightarrow x - y = 5\lambda$ (<i>i</i>) $(y, z) \in R \Rightarrow y - z = 5\mu$ (<i>ii</i>) adding (<i>i</i>) and (<i>ii</i>), $x - z = 5(\lambda + \mu) = 5k$	1 1 2
Q. Nos. 27	A.27 to 32 carry 4 marks each. Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive $x - x = 0$, for every $x \in Z$ is divisible by $5 \Rightarrow (x, x) \in R$ For symmetric $(x, y) \in R \Rightarrow x - y$ is divisible by $5 \Rightarrow y - x$ is divisible by $5 \Rightarrow (y, x) \in R$ For transitive Let $(x, y) \in R$ and $(y, z) \in R$ $(x, y) \in R \Rightarrow x - y = 5\lambda$ (i) $(y, z) \in R \Rightarrow y - z = 5\mu$ (ii) adding (i) and $(ii), x - z = 5(\lambda + \mu) = 5k$ $\Rightarrow (x, z) \in R \Rightarrow R$ is transitive.	1 1 2
Q. Nos. 27	27 to 32 carry 4 marks each. Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive $x - x = 0$, for every $x \in Z$ is divisible by $5 \Rightarrow (x, x) \in R$ For symmetric $(x, y) \in R \Rightarrow x - y$ is divisible by $5 \Rightarrow y - x$ is divisible by $5 \Rightarrow (y, x) \in R$ For transitive Let $(x, y) \in R \Rightarrow R$ is symmetric. For transitive Let $(x, y) \in R \Rightarrow x - y = 5\lambda$ (<i>i</i>) $(y, z) \in R \Rightarrow y - z = 5\mu$ (<i>ii</i>) adding (<i>i</i>) and (<i>ii</i>), $x - z = 5(\lambda + \mu) = 5k$ $\Rightarrow (x, z) \in R \Rightarrow R$ is transitive. Hence R is an equivalence relation.	1 1 2
Q. Nos. 27 28	27 to 32 carry 4 marks each. Prove that the relation R on Z , defined by $R = \{(x, y): (x - y) \text{ is divisible by 5}\}$ is an equivalence relation. Answer: For reflexive $x - x = 0$, for every $x \in Z$ is divisible by $5 \Rightarrow (x, x) \in R$ For symmetric $(x, y) \in R \Rightarrow x - y$ is divisible by $5 \Rightarrow y - x$ is divisible by $5 \Rightarrow (y, x) \in R$ For transitive Let $(x, y) \in R$ and $(y, z) \in R$ $(x, y) \in R \Rightarrow x - y = 5\lambda$ (i) $(y, z) \in R \Rightarrow y - z = 5\mu$ (ii) adding (i) and (ii), $x - z = 5(\lambda + \mu) = 5k$ $\Rightarrow (x, z) \in R \Rightarrow R$ is transitive. Hence R is an equivalence relation. If $y = \sin^{-1}\left(\frac{\sqrt{1+x} + \sqrt{1-x}}{2}\right)$, then show that $\frac{dy}{dx} = \frac{-1}{2\sqrt{1-x^2}}$	1 1 2

Answer:
Put
$$x = \cos 2\theta \Rightarrow \theta = \frac{1}{2} \cos^{-1} x$$
1 $\therefore y = \sin^{-1} \left(\frac{\sqrt{2} \cos \theta + \sqrt{2} \sin \theta}{2} \right) = \sin^{-1} \left(\sin \left(\frac{\pi}{4} + \theta \right) \right)$ 2 $\Rightarrow y = \frac{\pi}{4} + \theta = \frac{\pi}{4} + \frac{1}{2} \cos^{-1} x$ $\frac{1}{2}$ $\Rightarrow \frac{dy}{dx} = \frac{-1}{2\sqrt{1-x^2}}$ $\frac{1}{2}$ ORVerify the Rolle's Theorem for the function $f(x) = e^x \cos x \sin \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.Answer:f is continuous in $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.Answer:f is differentiable in $\left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$ Also, $f \left(-\frac{\pi}{2} \right) = f \left(\frac{\pi}{2} \right) = 0$ All conditions of Rolle's Theorem are satisfied. So, there exist $c \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$ such that $f'(c) = 0 \Rightarrow e^c (\cos c - \sin c) = 0$ $\Rightarrow c = \frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$ 29Evaluate: $\int_{0}^{1} \frac{x \sin x}{1 + \cos^2 x} dx$ A A A A $A = \int_{0}^{1} \frac{x \sin x}{1 + \cos^2 x} dx$ A |

(PTO)

	Answer:	
	Given differential equation can be written as $dy = dx$	
	$\frac{dy}{2e^{-y}+1} = \frac{dx}{x+1}$	1
	$\int e^{y} \int dx$	
	$\Rightarrow \int \frac{1}{2+e^{y}} dy = \int \frac{1}{x+1}$	
	$\Rightarrow \log \left 2 + e^{y} \right = \log \left x + 1 \right + \log C$	2
	$\Rightarrow 2 + e^{y} = C(x+1)$	1
	when $x = 0$, $y = 0 \Longrightarrow C = 3$	$\frac{1}{2}$
	$\therefore \text{ Required solution is } 2 + e^y = 3(x+1) \text{ or } e^y = 3x+1$	$\frac{1}{2}$
31	A manufacturer has three machines I, II and III installed in his factory. Machines I and II are capable of being operated for at most 12 hours whereas machine III must be operated for at least 5 hours a day . He produces only two items M and N each requiring the use of all the three machines. The number of hours required for producing 1 unit of each of M and N on the three machines are given in the following table: $ \frac{I tems \ Number of hours required on Machines}{I \ II \ III} $ He makes a profit of ₹ 600 and ₹ 400 on items M and N respectively. How many of each item should he produce so as to maximize his profit assuming that she can sell all the items that he produced? What will be the maximum profit? Answer: Let <i>x</i> units of item <i>M</i> and <i>y</i> units of item <i>N</i> are produced.	2
	For correct graph :	1 ¹
	$Y = M_{\text{evimina}} Z = 600 \text{ m} + 400 \text{ m}$	$\frac{1-}{2}$ marks
	2x + y = 12 Maximize $Z = 600x + 400y(0,12)$	
	$r + 2y \le 12$	1
	$x + 2y \le 12$ $2r + y \le 12$	$1\frac{1}{2}$
	$x + \frac{5}{4}y = 5\pi - \frac{6}{6} D(0,6)$ x + 1 - 25y > 5	2
	F(0,4) $x > 0, y > 0$	
	B(6,0)	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$Z_{4(3,0)} = 4000 Z_{4(3,0)} = 2400$	1
	$Z_{C(4,4)} = 1600, Z_{D(0,6)} = 2100$	$\overline{2}$
	$\Sigma_{E(0,4)} = 1000$	
	\therefore 4 units each of <i>M</i> and <i>N</i> must be produced to get maximum profit of Rs. 4,000	$\frac{1}{2}$
32	A coin is biased so that the head is three times as likely to occur as tail. If the coin is	2
	tossed twice, find the probability distribution of number of tails. Hence find the mean of the number of tails.	

	Answer:	
	$P(\text{Hard}) = \frac{3}{2} P(\text{Tail}) = \frac{1}{2}$	1
	$F(\text{Head}) = \frac{1}{4}, F(\text{Tall}) = \frac{1}{4}$	1
	Let $X =$ number of tails. Clearly X can be 0, 1, 2	$\frac{1}{2}$
	Probability distribution is given by	-
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.1
	$P(X) = \frac{9}{16} = \frac{6}{16} = \frac{1}{16}$	$1\frac{1}{2}$
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
	$Mean = \sum X \cdot P(X) = \frac{1}{2}$	1
	OR	
	Summers that 5 mer out of 100 and 25 warmer out of 1000 are good anotare	
	Assuming that there are equal number of men and women, find the probability of	
	choosing a good orator.	
	Answer:	1
	Let M be an event of choosing a man and N be an event of choosing a women.	$\overline{2}$
	A be an event of choosing a good orator. 1	A
	$P(M) = P(W) = \frac{1}{2};$	2
	$P(A M) = \frac{5}{5} = \frac{1}{1} P(A W) = \frac{25}{1} = \frac{1}{1}$	2
	$1(1/10)^{-1}100^{-2}20, 1(1/10)^{-1}1000^{-4}0$	
	P(A) = P(A M).P(M) + P(A W).P(W)	
	$=\frac{1}{1}\times\frac{1}{1}+\frac{1}{1}\times\frac{1}{2}=\frac{3}{2}$	$1 + \frac{1}{2}$
	20 2 40 2 80	2
	SECTION – D	
Q. Nos.	33 to 36 carry 6 marks each.	
22		
33	$\begin{vmatrix} a-b & b+c & a \end{vmatrix}$	
	Using properties of determinants prove that: $ b-c + a + b = a^3 + b^3 + c^3 - 3abc$.	
	$\begin{vmatrix} c-a & a+b & c \end{vmatrix}$	
	Answer: $ a-b,b+c,a $	
	$LHS = \Lambda = \begin{vmatrix} a & c & c + a \\ b - c & c + a \end{vmatrix}$	
	$a = \begin{bmatrix} c & c & c & a \\ c - a & a + b & c \end{bmatrix}$	
	$C \rightarrow C + C$	
	$c_3 \rightarrow c_3 + c_2$	
	$A = \begin{bmatrix} a & b & b + c \\ b & a & a + a \\ a & b + a \end{bmatrix}$	
	$\Delta = \begin{bmatrix} b - c & c + a & a + b + c \\ c - a & a + b & a + b + c \end{bmatrix}$	1
	c-u u+v u+v+c	

	taking $(a+b+c)$ common from C_3 and applying $R_1 \rightarrow R_1 - R_2$, $R_2 \rightarrow R_2 - R_3$	
	$\begin{vmatrix} a-2b+c & b-a \end{vmatrix}$	
	$\Delta = (a+b+c) \left b - 2c + a c - b 0 \right $	1 + 1 + 1
	$\begin{vmatrix} c-a & a+b & 1 \end{vmatrix}$	
	expanding along C_3 ,	
	$\Delta = (a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)$	1
	$=a^{3}+b^{3}+c^{3}-3abc=$ RHS	1
	OR	1
	If $A = \begin{bmatrix} 2 & 0 & -1 \end{bmatrix}$, then show that $A^3 - 4A^2 - 3A + 11I = O$. Hence find A^{-1} .	
	Answer:	
		4
	$A^2 = \begin{bmatrix} 1 & 4 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	1
		1
	$A^{-} = \begin{bmatrix} 10 & 5 & 1 \\ 25 & 42 & 24 \end{bmatrix}$	1
	$LHS = A^{2} - 4A^{2} - 3A + 11I$	
	$= \begin{bmatrix} 10 & 5 & 1 & -4 & 1 & 4 & 1 & -5 & 2 & 0 & -1 & +11 & 0 & 1 & 0 \\ 35 & 42 & 34 & 8 & 9 & 9 & 1 & 2 & 3 & 0 & 0 & 1 \end{bmatrix}$	2
		Z
	$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = O$	
	Now, $A^{-1} = -\frac{1}{11} (A^2 - 4A - 3I)$	1
	$\begin{bmatrix} 2 & -5 & -3 \end{bmatrix}$	
	$=-\frac{1}{11}$ -7 1 5	1
	$\begin{bmatrix} 4 & 1 & -6 \end{bmatrix}$	
34	Find the intervals on which the function $f(x) = (x-1)^3 (x-2)^2$ is (a) strictly	
	increasing (b) strictly decreasing.	

Answer:

 $f(x) = (x-1)^{3} (x-2)^{2}$ $\Rightarrow f'(x) = (x-1)^{2} (x-2)(5x-8)$ (a) for strictly increasing, f'(x) > 0 $\Rightarrow (x-1)^{2} (x-2)(5x-8) > 0$

$$\Rightarrow (x-2)(5x-8) > 0 \qquad (as x \neq 1)$$

$$\Rightarrow x \in \left(-\infty, \frac{8}{5}\right) \cup (2, \infty) \qquad (as x \neq 1)$$

$$\therefore x \in (-\infty, 1) \cup \left(1, \frac{8}{5}\right) \cup (2, \infty)$$

(b) for strictly decreasing, $f'(x) < 0$

$$\Rightarrow x \in \left(\frac{8}{5}, 2\right)$$

OR

Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its side. Also, find the maximum volume.

Answer:

Let sides of a rectangle are x cm and y cm. Given $2x + 2y = 36 \Rightarrow y = 18 - x$

Volume, $V = \pi x^2 y = \pi x^2 (18 - x) = \pi (18x^2 - x^3)$

$$\Rightarrow \frac{dV}{dx} = \pi \left(36x - 3x^2 \right)$$

For maxima/minima, put $\frac{dV}{dx} = 0$

$$\Rightarrow x = 12 \text{ cm} \quad (\because x \neq 0)$$

Again, $\frac{d^2 V}{dx^2} = \pi (36 - 6x)$

$$\Rightarrow \frac{d^2 V}{dx^2} \bigg|_{x=12 \text{ cm}} = -36\pi < 0$$

 \therefore Volume is maximum when x = 12 cm.

Also, y = (18 - x) cm = 6 cm

Dimension of rectangle are $12 \text{ cm} \times 6 \text{ cm}$

Maximum volume = $\pi x^2 y = 864\pi \text{ cm}^3$

2

1

 $1\frac{1}{2}$

 $1\frac{1}{2}$

1

1

1

1

1

 $\frac{1}{2} + \frac{1}{2}$

