XII MATHEMATICS

QUESTION PAPER CODE 65/5/1 EXPECTED ANSWER/VALUE POINTS

Q.	VALUE POINTS	Marks
NO.	SECTION - A	
Que	stion Numbers 1 to 20 carry 1 mark each.	
Q. N	os. 1 to 10 are multiple choice questions of 1 mark each. Select the correct option:	
1	If A is a square matrix of order 3, such that $A(adjA) = 10I$, then $ adjA $ is equal to	
	(a) 1 (b) 10 (c) 100 (d) 101	_
	Answer: (c) 100	1
2	If A is a 3 x 3 matrix such that $ A = 8$, then $ 3A $ equals.	
	(a) 8 (b) 24 (c) 72 (d) 216	
	Answer: (d) 216	1
3	If $y = Ae^{5x} + Be^{-5x}$, then $\frac{d^2y}{d^2}$ is equal to	
	$\frac{dx^2}{dx^2} = \frac{dx^2}{dx^2} = \frac{dx^2}{dx^2$	3
	(a) $25y$ (b) $5y$ (c) $-25y$ (d) $15y$	1
	Allowel. (a) 25y	1
4	$\int x^2 e^{x^3} dx$ equals	
	(a) $\frac{1}{3}e^{x^3} + C$ (b) $\frac{1}{3}e^{x^4} + C$ (c) $\frac{1}{2}e^{x^3} + C$ (d) $\frac{1}{2}e^{x^2} + C$	
	Answer: (a) $\frac{1}{2}e^{x^3} + C$	1
	3	1
5	If $\hat{i}, \hat{j}, \hat{k}$ are unit vectors along three mutually perpendicular directions, then	
	(a) $\hat{i} \cdot \hat{j} = 1$ (b) $\hat{i} \times \hat{j} = 1$ (c) $\hat{i} \cdot \hat{k} = 0$ (d) $\hat{i} \times \hat{k} = 0$	
	Answer: (c) $\hat{i}.\hat{k}=0$	1
6		
0	ABCD is a rhombus whose diagonals intersect at E. Then $EA + EB + EC + ED$	
	equals	
	(a) $\vec{0}$ (b) \vec{AD} (c) $2\vec{BC}$ (d) $2\vec{AD}$	
	Answer: (a) $\vec{0}$	1
7	The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{4-z}{k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{-2}$ are mutually perpendicular	
	if the value of k is	
	(a) $-\frac{2}{3}$ (b) $\frac{2}{3}$ (c) -2 (d) 2	
	Answer: (a) $-\frac{2}{3}$	1

8
 The graph of the inequality
$$2x + 3y > 6$$
 is
 (a) half plane that contains the origin
 (b) half plane that neither contains the origin nor the points of the line $2x + 3y = 6$
 (c) whole XOY-plane excluding the points on the line $2x + 3y = 6$

 (d) entire XOY-plane excluding the points on the line $2x + 3y = 6$
 1

 9
 A card is picked at random from a pack of 52 playing cards. Given that the picked card is a queen, the probability of this card to be a card of spade is
 1

 10
 A die is thrown once. Let A be the event that the number obtained is greater than 3. Let B be the event that the number obtained is less than 5. Then, $P(A \cup B)$ is
 1

 10
 A die is thrown once. Let A be the event word/sentence:
 1

 11
 In Answer: (c) $\frac{1}{4}$
 (d) $\frac{1}{2}$

 Answer: (d) 1
 1
 1

 10
 A die is thrown once. Let A be the event that the number obtained is greater than 3. Let B be the event that the number obtained is less than 5. Then, $P(A \cup B)$ is
 1

 (a) $\frac{2}{5}$
 (b) $\frac{3}{5}$
 (c) 0
 (d) 1
 1

 11
 In Q. Nos. 11 to 15, fill in the blanks with correct word/sentence:
 1
 1

 11
 A relation in a set A is called
 relation, if each element of A is related to itself.
 1

 12
 If $A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$
 and $A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$

15	The vector equation of a line which passes through the points $(3, 4, -7)$ and $(1, -1, 6)$	
	is Answer: $\vec{x} = (2\hat{i} + 4\hat{j} - 7\hat{k}) + 2(-2\hat{i} - 5\hat{j} + 12\hat{k})$	1
	Answer: $7 = (3\hat{i} + 4\hat{j} - 7\hat{k}) + \lambda(-2\hat{i} - 5\hat{j} + 13\hat{k})$ Or $\vec{k} = (3\hat{i} + 4\hat{j} - 7\hat{k}) + \lambda(2\hat{i} + 5\hat{j} - 13\hat{k})$	
	$OI, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	The line of shortest distance between two skew lines is to both the	1
	Answer: perpendicular	
0.1	6 to 20 are very short answer questions.	
16	$\begin{bmatrix} (17\pi) \end{bmatrix}$	
10	Find the value of $\sin^{-1}\left[\sin\left(-\frac{17\pi}{8}\right)\right]$.	
	Answer:	
	$\sin^{-1}\left \sin\left(-\frac{17\pi}{8}\right)\right = -\sin^{-1}\left \sin\left(2\pi + \frac{\pi}{8}\right)\right $	$\frac{1}{2}$
	π	1
	$=-\frac{1}{8}$	$\overline{2}$
17	For $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$, write A^{-1} .	
	Answer:	9
	A = 1	1/2
	$A^{-1} = \begin{bmatrix} -1 & 4 \end{bmatrix}$	1/2
		1/2
18	If the function f defined as $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & x \neq 3 \\ k & x = 3 \end{cases}$, find the value	
	of k	
	Answer:	
	$\lim_{k \to \infty} x^2 - 9 - 6 + k - 6$	1 1
	$\lim_{x \to 3^{-1}} \frac{1}{x-3} = 0, \dots K = 0$	$\frac{1}{2} + \frac{1}{2}$
19	If $f(x) = x^4 - 10$, then find the approximate value of $f(2.1)$.	
	Answer:	
	$f(2.1) \simeq f(2) + (0.1) f'(2)$	1/2
	=9.2	1/2
	OR	
	Find the slope of the tangent to the curve $y = 2\sin^2(3x)$ at $x = \frac{\pi}{6}$.	
	Answer:	
	$\frac{dy}{dx} = 6\sin 6x$	1/2
	ax : slope of tangent = 0	1/2
20	$\frac{4}{1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + $	1/2
	Find the value of $\int x-3 dx$.	
	Answer: $\int x-5 dx = \int (5-x) dx = \frac{15}{2}$	1/2 + 1/2

	SECTION – B	
Q. N	os. 21 to 26 carry 2 marks each.	
21	If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$, then show that $(fof)(x) = x$, for all $x \neq \frac{2}{3}$. Also, write inverse	
	of f .	
	Answer:	
	$(fof)(x) = f\left(\frac{4x+3}{6x-4}\right) = \frac{4\left(\frac{4x+3}{6x-4}\right) + 3}{6\left(\frac{4x+3}{6x-4}\right) - 4} = \frac{34x}{34} = x$	$1\frac{1}{2}$
	Now, $(fof)(x) = x \Longrightarrow f^{-1} = f \text{ or } f^{-1}(x) = \frac{4x+3}{6x-4}$	$\frac{1}{2}$
	Check if the relation R in the set R of real numbers defined as $R = \{(a,b): a < b\}$ is	
	(i) symmetric, (ii) transitive.	
	$(i)1, 2 \in \mathbb{R}$ such that $1 < 2 \Rightarrow (1,2) \in \mathbb{R}$,	
	but since 2 is not less than $1 \Rightarrow (2,1) \notin R$.	1
	Hence <i>R</i> is not symmetric.	
	(ii) Let $(a,b) \in R$ and $(b,c) \in R, \therefore a < b$ and $b < c$	1
	$\Rightarrow a < c \Rightarrow (a, c) \in R \therefore R \text{ is transitive.}$	1
22	Find $\int \frac{x}{x^2 + 3x + 2} dx$	
	Answer:	
	$\int \frac{x}{x^2 + 3x + 2} dx = \int \frac{x}{(x+1)(x+2)} dx = \int \left(\frac{-1}{x+1} + \frac{2}{x+2}\right) dx$	1
	$= -\log x+1 + 2\log x+2 + C$	1
23	If $x = a\cos\theta$; $y = b\sin\theta$, then find $\frac{d^2y}{d^2}$.	
	dx^2	
	Answer: $dx \qquad dy \qquad b$	
	$\frac{du}{d\theta} = -a\sin\theta, \frac{dy}{d\theta} = b\cos\theta \Rightarrow \frac{dy}{dx} = -\frac{b}{a}\cot\theta$	$\frac{1}{2} + \frac{1}{2}$
	$\left(\frac{d^2y}{d^2y} = \frac{b}{cos} ec^2\theta \left(\frac{-1}{cos}\right) = -\frac{b}{cos} ec^3\theta$	
	$dx^2 = a = (a\sin\theta) = a^2$	$\frac{1}{2}^{+}\frac{1}{2}$
	Find the differential of $\sin^2 x$ w.r.t. $e^{\cos x}$.	
	Answer:	
	Let $y = \sin^2 x$ and $z = e^{\cos x}$. $\frac{dy}{dx} = 2\sin x \cos x$ and $\frac{dx}{dx} = -\sin x \cdot e^{\cos x}$	$\frac{1}{-+-}$
	$\therefore \frac{dy}{dx} = \frac{2\sin x \cos x}{\cos x} = \frac{-2\cos x}{\cos x} \text{ or } -2\cos x e^{-\cos x}$	$ \begin{array}{c} 2 \\ 2 \\ 1 \\ 1 \end{array} $
	$dz - \sin x e^{\cos x} e^{\cos x}$	$\frac{1}{2} + \frac{1}{2}$

24	$\frac{2}{1}$	
2.	Evaluate $\int_{1} \left[\frac{1}{x} - \frac{1}{2x^2} \right] e^{2x} dx$	
	Answer:	
	$\operatorname{Put} 2x = t, dx = \frac{1}{2}dt$	$\frac{1}{2}$
	$\therefore I = \int_{1}^{2} \left[\frac{1}{x} - \frac{1}{2x^{2}} \right] e^{2x} dx = \int_{2}^{4} \left[\frac{1}{t} - \frac{1}{t^{2}} \right] e^{t} dt$	$\frac{1}{2}$
	$= \left[\frac{1}{t}e^{t}\right]_{2}^{4} = \frac{e^{4}}{4} - \frac{e^{2}}{2}$	$\frac{1}{2} + \frac{1}{2}$
25	Find the value of $\int_{0}^{1} x(1-x)^n dx$.	
	Answer:	
	$\int_{-\infty}^{1} x(1-x)^{n} dx = \int_{-\infty}^{1} (1-x)(1-1+x)^{n} dx = \int_{-\infty}^{1} (x^{n}-x^{n+1}) dx$	1
	$\begin{matrix} 0 & 0 & 0 \\ \Gamma & n+1 & n+2 & \neg^1 & 1 & 1 \end{matrix}$	
	$=\left \frac{x^{n+1}}{n+1} - \frac{x^{n+2}}{n+2}\right _{0} = \frac{1}{n+1} - \frac{1}{n+2} \text{ or } \frac{1}{(n+1)(n+2)}$	$\frac{1}{2} + \frac{1}{2}$
		÷
26	Given two independent events A and B such that $P(A) = 0.3$ and $P(B) = 0.6$, find $P(A \cap B')$.	
	Answer:	
	$P\left(A^{'} \cap B^{'}\right) = P\left(A^{'}\right)P\left(B^{'}\right)$	1
	=(0.7)(0.4)=0.28	1
	SECTION – C	
O. N	los. 27 to 32 carry 4 marks each.	
X ••••		
27	Solve for $x : \sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$.	
	Answer:	
	$\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2} \Rightarrow (1-x) = \sin\left(\frac{\pi}{2} + 2\sin^{-1}x\right)$	$1\frac{1}{2}$
	$\Rightarrow (1-x) = \cos(2\sin^{-1}x) \Rightarrow 1-x = 1-2x^2$	2
	$\therefore 2x^2 - x = 0 \Longrightarrow x = 0, x = \frac{1}{2}$	1
	since $x = \frac{1}{2}$ does not satisfy the given equation	1
	$\therefore x = 0$ is the required solution.	$\frac{1}{2}$
28	If $y = (\log x)^x + x^{\log x}$, then find $\frac{dy}{dx}$	
	dx	

Answer:
$$y = (\log x)^{2} + x^{\log x} = u + v \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$
1 $\therefore \log u = x \log (\log x) \text{ and } \log v = (\log x)^{3}$ $\frac{1}{2}$ $\frac{du}{dx} = (\log x)^{1} \left[\frac{1}{\log x} + \log(\log x)\right] = \ln \frac{dv}{dx} = x^{\log x} \cdot \frac{2\log x}{x}$ $\frac{1}{2}$ $\frac{dy}{dx} = (\log x)^{1} \left[\frac{1}{\log x} + \log(\log x)\right] + x^{\log x} \cdot \frac{2\log x}{x}$ $\frac{1}{2}$ 29Solve the differential equation: $x \sin\left(\frac{y}{x}\right) \frac{dy}{dx} + x - y \sin\left(\frac{y}{x}\right) = 0$, given that
 $x = 1$ when $y = \frac{\pi}{2}$. $\frac{1}{2}$ Answer:
Given differential equation gives $\frac{dy}{dx} = \frac{y \sin\left(\frac{y}{x}\right) - x}{x \sin\left(\frac{y}{x}\right)}$ $\frac{1}{2}$ $\frac{y}{x} = v \Rightarrow y = vx$ and $\frac{dv}{dx} = v + x \frac{dv}{dx}$ $\frac{1}{2}$ $\therefore v + x \frac{dv}{dx} = \frac{y \sin v - 1}{\sin v} \Rightarrow x \frac{dv}{dx} = -\frac{1}{\sin v}$ $\frac{1}{2}$ $\Rightarrow \int \sin v \, v = -\int \frac{1}{x} \, dx$ $\frac{1}{2}$ $\therefore \cos\left(\frac{y}{x}\right) = \log|x|$ to $\cos\left(\frac{y}{x}\right) = \log|x| + C$ $\frac{1}{2}$ 30 If $\vec{u} = i + 2j + 3k$ and $\vec{b} = 2i + 4j - 5k$ represent two adjacent sides of a parallelogram,
find unit vectors parallel to the diagonals of the parallelogram. $1 + 1$ $Answer:$ Diagonal vectors are: $\vec{a} + \vec{b} = 3i + 6j - 2k$ and $d - \vec{b} = -i - 2j + 8k$
 $(\sigma, \vec{b} - a = i + 2j - 8k)$ $1 + 1$ \therefore unit vectors $\operatorname{are}\left(\frac{d+b}{d+b}\right] = \frac{3}{7}i + \frac{6}{7}j - \frac{2}{7}k$ and $\left(\frac{d-b}{d-b}\right) = -\frac{1}{\sqrt{69}}j - \frac{2}{\sqrt{69}}j + \frac{8}{\sqrt{69}}k$ $1 + 1$ ORUsing vectors, find the area of the triangle ABC with vertices A (1, 2, 3), B(2, -1, 4)and C(4, 5, -1).

(PTO)

	OR In a shop X, 30 tins of ghee of type A and 40 tins of ghee of type B which look alike, are kept for sale. While in a shop Y, similar 50 tins of ghee of type A and 60 tins of ghee of type B are there. One tin of ghee is purchased from one of the randomly selected shop and is found to be of type B. Find the probability that it is purchased	
	from shop Y. Answer:	
	E_1 :selecting shop X	
	E_2 :selecting shop Y	1
	A : purchased tin is of type B	2
	$P(E_1) = P(E_2) = \frac{1}{2}$	1
	$P(A E_1) = \frac{4}{7}, P(A E_2) = \frac{6}{11}$	1
	$P(E_{2} A) = \frac{P(E_{2})P(A E_{2})}{P(E_{1})P(A E_{1}) + P(E_{2})P(A E_{2})}$	
	$=\frac{\frac{1}{2}\cdot\frac{6}{11}}{14}$	2
	$\frac{1}{2} \cdot \frac{1}{7} + \frac{1}{2} \cdot \frac{1}{11}$	3
	$=\frac{21}{2}$	1
	43	$\frac{1}{2}$
	SECTION D	
	SECTION – D	
	SECTION – D	
Q. N	Jos. 33 to 36 carry 6 marks each.	
Q. N 33	SECTION – D Ios. 33 to 36 carry 6 marks each. Find the vector and Cartesian equations of the line which is perpendicular to the lines	
Q. N 33	Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the	
Q. N 33	SECTION – D Tos. 33 to 36 carry 6 marks each. Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the point (1, 1, 1). Also find the angle between the given lines. Answer:	
Q. N 33	SECTION – D Tos. 33 to 36 carry 6 marks each. Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the point (1, 1, 1). Also find the angle between the given lines. Answer: Let equation of required line is $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-1}{2}$ (i)	$\frac{1}{2}$
Q. N 33	SECTION – D Jos. 33 to 36 carry 6 marks each. Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the point (1, 1, 1). Also find the angle between the given lines. Answer: Let equation of required line is $\frac{x-1}{a} = \frac{y-1}{b} = \frac{z-1}{c}$ (i) x+2, y-3, z+1, x-1, y-2, z-3	$\frac{1}{2}$
Q. N 33	SECTION – D Jos. 33 to 36 carry 6 marks each. Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the point (1, 1, 1). Also find the angle between the given lines. Answer: Let equation of required line is $\frac{x-1}{a} = \frac{y-1}{b} = \frac{z-1}{c}$ (i) Since this line is perpendicular to $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$,	$\frac{1}{2}$
Q. N 33	SECTION – D Tos. 33 to 36 carry 6 marks each. Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the point (1, 1, 1). Also find the angle between the given lines. Answer: Let equation of required line is $\frac{x-1}{a} = \frac{y-1}{b} = \frac{z-1}{c}$ (i) Since this line is perpendicular to $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, $\frac{a+2b+4c=0}{2a+3b+4c=0}$ (ii) (ii)	$\frac{1}{2}$
Q. N 33	SECTION – D Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the point (1, 1, 1). Also find the angle between the given lines. Answer: Let equation of required line is $\frac{x-1}{a} = \frac{y-1}{b} = \frac{z-1}{c}$ (i) Since this line is perpendicular to $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, $\frac{a+2b+4c=0}{2a+3b+4c=0}$ (ii) Solving (ii) and (iii) , $\frac{a}{-4} = \frac{b}{4} = \frac{c}{-1}$	$\frac{1}{2}$
Q. N 33	SECTION – D SECTION – D (os. 33 to 36 carry 6 marks each. Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the point (1, 1, 1). Also find the angle between the given lines. Answer: Let equation of required line is $\frac{x-1}{a} = \frac{y-1}{b} = \frac{z-1}{c}$ (i) Since this line is perpendicular to $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, $\frac{a+2b+4c=0}{2a+3b+4c=0}$ (ii) Solving (ii) and (iii) , $\frac{a}{-4} = \frac{b}{4} = \frac{c}{-1}$ \therefore DR's of line in cartesian form is : -4, 4, -1	$\frac{1}{2}$ 1 1
Q. N 33	Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the point (1, 1, 1). Also find the angle between the given lines. Answer: Let equation of required line is $\frac{x-1}{a} = \frac{y-1}{b} = \frac{z-1}{c}$ (i) Since this line is perpendicular to $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, a+2b+4c=0(ii) 2a+3b+4c=0(iii) Solving (ii) and (iii) , $\frac{a}{-4} = \frac{b}{4} = \frac{c}{-1}$ \therefore DR's of line in cartesian form is: $\frac{x-1}{-4} = \frac{y-1}{4} = \frac{z-1}{-1}$	$\frac{1}{2}$ 1 1 1 1
Q. N 33	Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the point (1, 1, 1). Also find the angle between the given lines. Answer: Let equation of required line is $\frac{x-1}{a} = \frac{y-1}{b} = \frac{z-1}{c}$ (i) Since this line is perpendicular to $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, a+2b+4c=0(ii) 2a+3b+4c=0(iii) Solving (ii) and (iii) , $\frac{a}{-4} = \frac{b}{4} = \frac{c}{-1}$ \therefore DR's of line in cartesian form is: $\frac{x-1}{-4} = \frac{y-1}{4} = \frac{z-1}{-1}$ Vector form of line is $\vec{r} = (\hat{i} + j + k) + \lambda(-4\hat{i} + 4j - k)$	$\frac{1}{2}$ 1 1 1 1 1 1
Q. N 33	Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the point (1, 1, 1). Also find the angle between the given lines. Answer: Let equation of required line is $\frac{x-1}{a} = \frac{y-1}{b} = \frac{z-1}{c}$ (i) Since this line is perpendicular to $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, a+2b+4c=0(ii) 2a+3b+4c=0(iii) Solving (ii) and (iii) , $\frac{a}{-4} = \frac{b}{4} = \frac{c}{-1}$ \therefore DR's of line in cartesian form is: $-4, 4, -1$ Equation of line in Cartesian form is: $\frac{x-1}{-4} = \frac{y-1}{4} = \frac{z-1}{-1}$ Vector form of line is $\vec{r} = (\hat{i} + j + k) + \lambda(-4\hat{i} + 4j - k)$ Let θ be the angle between given lines.	$\frac{1}{2}$ 1 1 1 1 1 1
Q. N 33	Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the point (1, 1, 1). Also find the angle between the given lines. Answer: Let equation of required line is $\frac{x-1}{a} = \frac{y-1}{b} = \frac{z-1}{c}$ (i) Since this line is perpendicular to $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, a+2b+4c=0(ii) 2a+3b+4c=0(iii) Solving (ii) and (iii) , $\frac{a}{-4} = \frac{b}{4} = \frac{c}{-1}$ \therefore DR's of line in cartesian form is: $\frac{x-1}{-4} = \frac{y-1}{4} = \frac{z-1}{-1}$ Vector form of line is $\vec{r} = (\hat{i} + j + k) + \lambda(-4\hat{i} + 4j - k)$ Let θ be the angle between given lines. $\cos \theta = \frac{1(2)+2(3)+4(4)}{\sqrt{1+4+16}\sqrt{4+9+16}} = \frac{24}{\sqrt{21}\sqrt{29}}$ $\therefore \theta = \cos^{-1}\left(\frac{24}{\sqrt{21}\sqrt{29}}\right)$	$\frac{1}{2}$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(PTO)

34 Using integration find the area of the region bounded between the two circles
$$x^2 + y^2 = 9 \operatorname{and}(x-3)^2 + y^2 = 9$$
.
Answer: Correct Figure 1
Point of intersection of. $x^2 + y^2 = 9; (x-3)^2 + y^2 = 9 \Rightarrow (x-3)^2 - x^2 = 0 \Rightarrow x = \frac{y}{2}$ 1
 $y = \frac{1}{2} \int_{0}^{2} \sqrt[3]{9-(x-3)^2} dx + \int_{\frac{1}{2}}^{2} \sqrt{9-x^2} dx$]
 $= 4 \left[\int_{\frac{1}{2}}^{2} \sqrt{9-(x-3)^2} dx + \int_{\frac{1}{2}}^{2} \sqrt{9-x^2} dx\right]$
 $= 4 \left[\int_{\frac{1}{2}}^{2} \sqrt{9-x^2} dx\right]$
 $= 4 \left[\int_{\frac{$

(PTO)

	$\therefore \text{ minimum value } = a \sqrt{\frac{b}{a}} \cdot c + b \cdot \frac{c^2}{c} \sqrt{\frac{a}{b}} = 2\sqrt{ab} \cdot c$	1
36	If a, b, c are p th , q th , and r th terms respectively of a G.P, then prove that	
	$ \log a p 1 $	
	$\begin{vmatrix} \log b & a \end{vmatrix} = 0$	
	$\left \log c r \right $	
	Answer:	1
	$a = AR^{p-1}, \ b = AR^{q-1}, \ c = AR^{r-1}$	$1\frac{1}{2}$
		2
	$\begin{vmatrix} \log A + (p-1)\log R & p & 1 \end{vmatrix} \qquad \begin{vmatrix} 1 & p & 1 \end{vmatrix} \qquad \begin{vmatrix} p & p & 1 \end{vmatrix} \qquad \begin{vmatrix} 1 & p & 1 \end{vmatrix}$	
	$:: \Delta = \log A + (q-1)\log R q 1 = \log A 1 q 1 + \log R q q 1 - \log R 1 q 1 $	1+1+1+1
	$\log A + (r-1)\log R$ r 1 1 r 1 r 1 1 r 1 1 r 1	
		1
	=0+0+0=0	$\frac{1}{2}$
		2
	OR	
	If $A = \begin{bmatrix} 3 & 2 & -4 \end{bmatrix}$, then find A^{-1} .	
	$\begin{bmatrix} 1 & 1 & -2 \end{bmatrix}$	
	Using A^{-1} solve the following system of equations:	
	2x-3y+5z=11	
	3r + 2y - 4z = -5	
	x + y - 2z = -3	
	x + y - 2z = -3	
	Answer: $ A = 2(0) + 2(-2) + 5(1) = -1$	
	A = 2(0) + 3(-2) + 5(1) = -1	1
	$\begin{bmatrix} 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & -2 \end{bmatrix}$	2
	$\Rightarrow A^{-1} = -\begin{vmatrix} 2 & -9 & 23 \end{vmatrix}$ or $\begin{vmatrix} -2 & 9 & -23 \end{vmatrix}$ (1 mark for any 4 correct co-factors)	Z
	1 -5 13 -1 5 -13	
	$\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 11 \end{bmatrix}$	
	Given equations can be written as $AX = B$ where $X = v$ and $B = -5$	1
	$\begin{bmatrix} 0 & 1 & -2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 11 \\ 1 \\ 2 \end{bmatrix}$	1
	$\therefore X = A^{-}B = \begin{vmatrix} -2 & 9 & -23 \end{vmatrix} \begin{vmatrix} -5 \end{vmatrix} = \begin{vmatrix} 2 \end{vmatrix}$	1
	$\begin{bmatrix} -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} -3 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$	
	$\Rightarrow x=1, y=2, z=3$	1
1		