## PHYSICS - JEE ADVANCED PAPER - 2

## SECTION - 1

1. Consider two plane convex lens of same radius of curvature and refractive index $n_{1}$ and $n_{2}$ respectively. Now consider two cases:


Case - I: When $\mathrm{n}_{1}=\mathrm{n}_{2}=\mathrm{n}$, then equivalent focal length of lens is $\mathrm{f}_{0}$
Case - II: When $n_{1}=n, n_{2}=n+\Delta n$, then equivalent focal length of lens is $f=f_{0}+\Delta f_{0}$
Then correct options are:
(a) If $\Delta \mathrm{n} / \mathrm{n}>0$, then $\Delta \mathrm{f}_{0} / \mathrm{f}_{0}<0$
(b) $\left|\Delta \mathrm{f}_{0} / \mathrm{f}_{0}\right|<|\Delta \mathrm{n} / \mathrm{n}|$
(c) If $\mathrm{n}=1.5, \Delta \mathrm{n}=10^{-3}$ and $\mathrm{f}_{0}=20 \mathrm{~cm}$ then $\left|\Delta \mathrm{f}_{0}\right|=0.02 \mathrm{~cm}$
(d)

## Solution:

$$
\begin{align*}
& \frac{1}{f_{1}}=(n-1)\left(\frac{1}{f}\right) \Rightarrow \frac{1}{f_{0}}=\frac{2(n-1)}{R}  \tag{1}\\
& \frac{1}{f_{2}}=(n+\Delta n-1)\left(\frac{1}{R}-\frac{1}{\infty}\right) \\
& \frac{1}{f+\Delta f_{0}}=\left(\frac{n-1}{R}\right)+(n+\Delta n-1)\left(\frac{1}{f}\right) \\
& \quad=\frac{2 n+\Delta n-2}{R}  \tag{2}\\
& \left(\frac{f_{0}+\Delta f_{0}}{f_{0}}\right)=\frac{(2 n-1) / R}{(2 n+\Delta n-2) / R} \\
& \frac{1+\Delta f_{0}}{f_{0}}=\frac{2(n-1)}{2 n+\Delta n-2} \\
& \Delta f_{0}=-2 \times 10^{-2}
\end{align*}
$$

## PHYSICS - JEE ADVANCED PAPER - 2

A, C
2. In YDSE monochromatic light of wavelength 600 nm incident of slits as shown in figure.

© Byius.com

If $\mathrm{S}_{1} \mathrm{~S}_{2}=3 \mathrm{~mm}, \mathrm{OP}=11 \mathrm{~mm}$ then
(a) If $\alpha=\frac{0.36}{\pi}$ degree then destructive interfaces at point P .
(b) If $\alpha=\frac{0.36}{\pi}$ degree then constructive interfaces at point O .
(c) If $\alpha=0$ then constructive interfaces at O
(d) Fringe width depends an $\alpha$

## Solution:

$$
\mathrm{d}=3 \mathrm{~mm} \quad \mathrm{OP}=11 \mathrm{~mm}
$$

$\Delta x=d \sin \alpha+d \sin \theta$

$$
=d \alpha+\frac{d y}{D}
$$

(A) $\Delta x=3 \times 10^{-3} \times \frac{.36}{\pi} \times \frac{\pi}{180}+\frac{3 \times 11 \times 10^{-6}}{1}=3900$

$$
3900=(2 n-1) \frac{\lambda}{2} \Rightarrow n=7
$$



Dest
(B) $\Delta x=3 \mathrm{~mm} \times \frac{.36}{\pi} \times \frac{\pi}{180}=600 \mathrm{~nm}$

## PHYSICS - JEE ADVANCED PAPER - 2

$600 \mathrm{~nm}=n 600 \mathrm{~nm}$
$\Rightarrow n=1$ const
(C) $\alpha=0 \quad \Delta x=0 \quad \therefore$ const
3. A uniform rigid rod of mass $m$ \& length 1 is released from vertical position on rough surface with sufficient friction for lower end not to slip as shown in figure. When rod makes angle $60^{\circ}$ with vertical then find correct alternative/s

(a) $\alpha=\frac{2 g}{\ell}$
(b) $\omega=\sqrt{\frac{3 g}{2 \ell}}$
(c) $N=\frac{m g}{16}$
(d) $a_{\text {radial }}=\frac{3 g}{4}$

## Solution:

$$
\begin{aligned}
& \Delta K+\Delta U=0 \\
& \begin{array}{l}
\frac{1}{2} T_{0} \omega^{2}=-\Delta U \\
\frac{1}{2} \frac{m l^{2}}{3} \omega^{2}=-\left(-m g \frac{L}{4}\right) \\
\omega=\sqrt{\frac{3 g}{u}} \\
a_{\text {radial }}=\frac{\omega^{2} \ell}{2}=\frac{3 g}{u} \times \frac{\ell}{2}=\frac{3 g}{4} \\
\tau=I_{0} \alpha \\
\alpha=\frac{m g}{2} \sin 60 \\
l^{2}
\end{array}=\frac{3 \sqrt{3} g}{4 l}
\end{aligned}
$$



## PHYSICS - JEE ADVANCED PAPER - 2

$$
\begin{gathered}
a_{v}=\left(\alpha \frac{l}{2}\right) \sin 60^{\circ}+\omega^{2} \frac{l}{2} \cos 60^{\circ} \\
=\frac{3 \sqrt{3} g}{8} \frac{\sqrt{3}}{2}+\frac{3 g}{8} \\
m g-N=m a_{v} \\
N=\frac{m g}{16}
\end{gathered}
$$

4. Monoatomic gas A having 5 mole is mixed with diatomic gas $B$ having 1 mole in container of volume $V_{0}$. Now the volume of mixture is compressed to $\frac{V_{0}}{4}$ by adiabatic process. Initial pressure and temperature of gas mixture is $\mathrm{P}_{0}$ and $\mathrm{T}_{0}$. [given 2 $2^{3.2}=9.2$ ]
Choose correct option:
(a) $\gamma_{\text {mix }}=1.6$
(b) Final pressure is between $9 \mathrm{P}_{0}$ and $10 \mathrm{P}_{0}$
(c) $|W \cdot D|=13 R T_{0}$
(d) Average Translational kinetic energy

## Solution:

$V_{m i x}=\frac{n_{1} C_{P_{1}}+n_{2} l_{P_{2}}}{n_{1} C_{V_{1}}+n_{2} C_{V_{2}}}=\frac{8}{5}$
$W=\frac{P_{1} V_{1}-P_{2} V_{2}}{V-1}$
$P_{0} V_{0}^{815}=P_{2}\left(\frac{V_{0}}{9}\right)^{8 / 5}$
$P_{2}=9.2 P_{0}$
$\omega=\frac{\left(P_{0} V_{0}-92 P_{0} \frac{V_{0}}{4}\right)}{3 / 5}=-13 R T_{0}$
5. The given arrangement is released from rest when spring is in natural length. Maximum extension in spring during the motion is $\mathrm{x}_{0} . \mathrm{a}_{1}, \mathrm{a}_{2}$ and $\mathrm{a}_{3}$ are accelerations of the blocks. Make the correct options

## PHYSICS - JEE ADVANCED PAPER - 2


(a) $a_{2}-a_{1}=a_{1}-a_{3}$
(b) $x_{0}=\frac{4 m g}{3 k}$
(c) Velocity of $2 m$ connected to spring when elongation is $\frac{x_{0}}{2}$ is $v=\frac{x_{0}}{2} \sqrt{\frac{3 k}{14 m}}$
(d) Acceleration $a_{1}$ at $\frac{x_{0}}{4}$ is $\frac{3 k x_{0}}{42 m}$

## Solution:

6. A dipole of Dipole moment $p=\frac{p_{0}}{\sqrt{2}}(\hat{i}+\hat{j})$. is placed at origin. Now a uniform external electric field at magnitude $\mathrm{E}_{0}$ is applied along direction of dipole. Two points A and B are lying on a equipotential surface of radius $R$ centered at origin. A is along axial position of dipole and $B$ is along equatorial position. There correct option are:

(a) Net electric field at point A is $3 \mathrm{E}_{0}$
(b) Net electric field at point B is Zero

## PHYSICS - JEE ADVANCED PAPER - 2

(c) Radius of equatorial surface $R=\left(\frac{k p_{0}}{E_{0}}\right)^{1 / 3}$
(d) Radius of equatorial surface $R=\left(\frac{\sqrt{2} k p_{0}}{E_{0}}\right)^{1 / 3}$

## Solution:

$$
\begin{aligned}
& P=\frac{P_{0}}{\sqrt{2}}(x+1) \\
& \frac{K P_{0}}{r^{3}}=E_{0} \\
& \left(E_{A}\right)_{\text {net }}=\frac{2 K P_{0}}{r^{3}}+E_{0}=3 E_{0} \\
& \left(E_{B}\right)_{n e t}=0
\end{aligned}
$$

7. A free hydrogen atom after absorbing a photon of wavelength $\lambda_{\mathrm{a}}$ gets excited from state $\mathrm{n}=1$ to $\mathrm{n}=4$. Immediately after electron jumps to $\mathrm{n}=\mathrm{m}$ state by emitting a photon of wavelength $\lambda_{\mathrm{e}}$. Let change in momentum of atom due to the absorption and the emission are $\Delta \mathrm{P}_{\mathrm{a}}$ and $\Delta \mathrm{p}_{\mathrm{e}}$ respectively. If $\lambda_{a} / \lambda_{e}=1 / 5$. Which of the following is correct
(a) $\mathrm{m}=2$
(b) $\Delta \mathrm{P}_{\mathrm{a}} / \mathrm{P}_{\mathrm{e}}=1 / 2$
(c) $\lambda_{e}=418 \mathrm{~nm}$
(d) Ratio of K.E. of electron in the state $\mathrm{n}=\mathrm{m}$ to $\mathrm{n}=1$ is $1 / 4$.

## Solution:

$$
\begin{gathered}
\frac{\lambda_{a}}{\lambda_{c}}=\frac{E_{4}-E_{1}}{E_{4}-E_{m}}=\frac{\left(1-\frac{1}{16}\right)}{\left(\frac{1}{m^{2}}-\frac{1}{16}\right)}=\frac{1}{5} \\
\Rightarrow m=2 \\
\lambda_{c}=\frac{12400 \times 4}{13.6}=3647
\end{gathered}
$$

## PHYSICS - JEE ADVANCED PAPER - 2

$$
\frac{K_{2}}{K_{1}}=\frac{1^{2}}{2^{2}}=\frac{1}{4}
$$

8. In a cylinder a heavy piston is moving with speed $v$ as shown diagram and gas is filled inside it. A gas molecule is moving with speed $\mathrm{v}_{0}$ towards moving piston. Then which of the following is correct (Assume $\mathrm{v} \lll \ll \mathrm{v}_{0} \frac{\Delta \ell}{\ell}$ ) and collision is elastic)

BBYJU'S

(a) change in speed after collision is 2 V
(b) change is speed after collision is $2 v_{0} \frac{\Delta \ell}{\ell}$
(c) rate of collision is $\frac{V}{\ell}$
(d) When piston is at $\frac{\ell}{2}$ its kinetic energy will be four times

Solution:


Change in speed is $\left(2 V+V_{0}-V_{0}\right)=2 V$


## SECTION - 2

9. If $f=\alpha y \hat{i}+2 \alpha x \hat{j}$ calculate the work done if a particle moves along path as shown in diagram.

## Solution:


$d \omega=\alpha y d x+2 \alpha x d x$
$\omega_{A \rightarrow B}=\int \alpha y d x=\alpha 1 \int_{0}^{1} d x=\alpha$

## PHYSICS - JEE ADVANCED PAPER - 2

$\omega_{B \rightarrow C}=2 \alpha 1 \int_{1}^{0.5} d y=-\alpha$
$\omega_{C \rightarrow D}=\int_{1}^{0.5} \alpha y d x=-\frac{\alpha}{4}$
$\omega_{D \rightarrow E}=2 \times \alpha \int_{0.5}^{0} x d y=-\frac{\alpha}{2}$
$\omega=-3 / 4$
10. In a given circuit inductor of $\mathrm{L}=1 \mathrm{mH}$ and resistance $\mathrm{R}=1 \Omega$ are connected in series to ends of two parallel conducting rods as shown. Now a rod of length 10 cm is moved with constant velocity of $1 \mathrm{~cm} / \mathrm{s}$ in magnetic field $\mathrm{B}=1 \mathrm{~T}$. If rod starts moving at $\mathrm{t}=0$ then current in circuit after 1 millisecond is $x \times 10^{-3} \mathrm{~A}$. Then value of x is: $\left(\right.$ given $\left.\mathrm{e}^{-1}=0.37\right)$

© Byius.com

## Solution:

$e=(V \times B) d l=10^{-3} v d f$
$i=10^{-3}\left(1-e^{-1}\right)$
$i=0.63 \mathrm{~mA}$
11. A prism is shown in the figure with prism angle $75^{\circ}$ and refractive index $\sqrt{3}$. A light ray incidents on a surface at incident angle $\theta$. Other face is coated with a medium of refractive index $n$. For $\theta \leq 60^{\circ}$ ray suffers total internal reflection find value of $n^{2}$.

## PHYSICS - JEE ADVANCED PAPER - 2



BYJU'S
© Byius.com

## Solution:

$\sin \theta=\frac{n}{\sqrt{3}}$
$\sin \theta=\sqrt{3} \sin (75-C)$
@ $\theta=60 \underline{T 2 R}$
$\sin 60=\sqrt{3} \sin (75-C)$

$\mathrm{C}=\left(45^{\circ}\right)$
$\frac{n}{\sqrt{3}}=\frac{1}{\sqrt{2}} n=\frac{\sqrt{3}}{\sqrt{2}} n^{2}=1.5$
12. Perfectly reflecting mirror of mass $M$ mounted on a spring constitute a spring mass system of angular frequency $\Omega$ such that $\frac{4 \pi M \Omega}{h}=10^{24} \mathrm{~m}^{-2}$ where h is plank constant. N photons of wavelength $\lambda=8 \pi \times 10^{-6} \mathrm{~m}$ strikes the mirror simultaneously at normal incidence such that the mirror gets displaced by $1 \mu \mathrm{~m}$. If the value of N is $x \times 10^{12}$, then find the value of x .


## PHYSICS - JEE ADVANCED PAPER - 2

## Solution:

Photons are reflected
$\therefore \quad M V=\frac{2 N h}{\lambda} \quad$ mean

$$
\begin{aligned}
& \mathrm{V}_{\text {mean }}=\omega \mathrm{A} \quad \mathrm{~A}=1 \text { min } \\
& \mathrm{N}=\frac{m \omega\left(10^{-6}\right) \lambda}{2 h} \\
& N=\frac{4 \pi M \omega}{h} \times 10^{-12} \\
& \therefore X=1
\end{aligned}
$$

13. A particle is projected with speed $\mathrm{v}_{0}$ at an angle $\theta\left(\theta \neq 90^{\circ}\right)$ with horizontal and it bounce at same angle with horizontal If average velocitv of inurnev is 08 vn where $\mathrm{v}_{\mathrm{n}}$ is average velocity of first projectile then $\alpha$ is.

© Byjus.com
14. 

Match the column

A sample of monoatomic gas undergoes different thermodynamic process. $\mathrm{Q}=$ Heat given to the gas, $\mathrm{W}=$ Work done by the gas, $\mathrm{U}=$ Change in internal energy of the gas.
15. The sample of monoatomic gas undergoes a process as represented by $\mathrm{P}-\mathrm{V}$ graph (if $\mathrm{P}_{0} \mathrm{~V}_{0}=1 / 3 \mathrm{RT}_{0}$ ) then


Beryu's
$\qquad$
(P) $W_{1 \rightarrow 2}=1 / 3 R T_{0}$
(Q) $Q_{1 \rightarrow 2 \rightarrow 3}=11 / 6 R T_{0}(\mathrm{R}) U_{1 \rightarrow 2}=R T_{0} / 2$
(S) $W_{1 \rightarrow 2 \rightarrow 3}=1 / 3 R T_{0}$

## PHYSICS - JEE ADVANCED PAPER - 2

Which of the following options are correct
(a) P, Q, R, S are correct
(b) Only P, Q are correct
(c) Only R, S are correct
(d) Only P, R, S correct

## SOLUTION:

$\omega_{1-2}=P_{0} V_{0}=\frac{1}{3} R T_{0}$

$$
\begin{aligned}
& Q_{2 \rightarrow 3}=n C_{V} \Delta T=\frac{f}{2} 2 V_{0} P_{0}=R T_{0} \\
& Q_{1 \rightarrow 2}=n C_{P} \Delta T=\frac{5}{6} R T_{0} \\
& \begin{aligned}
\begin{aligned}
=\frac{1}{3}
\end{aligned} T_{0} \\
\begin{aligned}
U_{1-2} & =n C_{V} \Delta T \\
& =n \frac{3}{2} R T_{0} \\
& =\frac{R T_{0}}{2}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

16. A sample of monoatomic gas undergoes a process as represented by $T-V$ graph (if $\mathrm{P}_{0} \mathrm{~V}_{0}=1 / 3 \mathrm{RT}_{0}$ ) then

(P) $W_{1 \rightarrow 2}=\frac{1}{3} R T_{0} \ln 2$
(Q) $Q_{1 \rightarrow 2 \rightarrow 3}=\frac{R T_{0}}{6}(2 \ln (2)+3)$
(R) $U_{1 \rightarrow 2}=0$
(S) $W_{1 \rightarrow 2 \rightarrow 3}=\frac{R T_{0}}{3} \ln 2$

Which of the following option are correct:
(a) P, Q are incorrect
(b) R, S are incorrect
(c) P, Q, S are incorrect (d) none of these

## PHYSICS - JEE ADVANCED PAPER - 2

## Solution:

$\omega_{1-2}=n R T_{0} \ln 2$
$Q_{1-2-3}=Q_{12}+Q_{23}$

$$
=d \omega_{12}+d U_{2-3}
$$

$$
=\frac{R T_{0}}{3} \ln n_{2}+n \frac{f}{2} R T_{0}
$$

$$
=\frac{R T_{0}}{3} \ell n_{2}+\frac{1}{3} \frac{3}{2} R T_{0}
$$

$\omega_{1-2-3}=\frac{1}{3} R_{0} T_{0} \ell n_{2}$
17. Length of string of a musical instrument is varied from $L_{0}$ to $2 L_{0}$ in 4 different cases. Wire is made of different materials of mass per unit length $\mu, 2 \mu, 3 \mu, 4 \mu$ respectively. For first case (string - 1 ) length is $L_{o}$, Tension is $T_{o}$ then fundamental frequency is $\mathrm{f}_{\mathrm{o}}$, for second case length of the string is $\frac{3 L_{o}}{2}$ ( $3^{\text {rd }}$ Harmonic), for third case length of the string is $\frac{5 L_{o}}{4}$ ( $5^{\text {th }}$ Harmonic) and for the fourth case length of the string is $\frac{7 L_{o}}{4}$ ( $14^{\text {th }}$ harmonic). If frequency of all is same then tension in strings in terms of $\mathrm{T}_{\mathrm{o}}$ will be:
(a) String - 1
(P) $\mathrm{T}_{\mathrm{o}}$
(b) String - 2
(Q) $\frac{T_{o}}{\sqrt{2}}$
(c) String - 3
(R) $\frac{T_{o}}{2}$
(d) String - 4
(S) $\frac{T_{o}}{16}$
(T) $\frac{3 T_{o}}{16}$

## Solution:

$$
\begin{equation*}
f_{1}=\frac{1}{2 L_{0}} \sqrt{\frac{T_{0}}{\mu}} \tag{1}
\end{equation*}
$$

(2) $L=\frac{3 L_{0}}{2}$

$$
f_{2}=\frac{3}{2 \frac{3 L_{0}}{2}} \sqrt{\frac{T_{2}}{2 \mu}}
$$

$$
T_{2}=\frac{T_{0}}{2}
$$

(3) $L=\frac{5 L_{0}}{4}$

$$
T_{3}=\frac{T_{0}}{16}
$$

(4) Similarly $T_{4}=\frac{T_{0}}{16}$

## SECTION - 3

18. The free length of all four string is varied from $\mathrm{L}_{0}$ to $2 \mathrm{~L}_{0}$. Find the maximum fundamental frequency of $1,2,3$, 4 in terms of $f_{0}$ (tension is same in all strings)
(a) String - 1
(P) 1
(b) String - 2
(Q) $\frac{1}{2}$
(c) String - 3
(R) $\frac{1}{\sqrt{2}}$
(d) String - 4
(S) $\frac{1}{\sqrt{3}}$
(T) $\frac{1}{16}$
(U) $\frac{3}{16}$

## Solution:

(1) $f_{1}=\frac{1}{2 L_{0}} \sqrt{\frac{T_{0}}{\mu}}$

## PHYSICS - JEE ADVANCED PAPER - 2

(2) $f_{2}=\frac{1}{L_{0}} \sqrt{\frac{T_{2}}{2 \mu}}=\frac{f_{0}}{\sqrt{2}}$

$$
\begin{aligned}
& f_{3}=\frac{1}{L_{0}} \sqrt{\frac{T_{2}}{3 \mu}}=\frac{f_{0}}{\sqrt{3}} \\
& f_{4}=\frac{1}{L_{0}} \sqrt{\frac{T_{2}}{4 \mu}}=\frac{f_{0}}{2}
\end{aligned}
$$

