Exercise 14.1

Page No: 208

- 1. Find the common factors of the given terms.
- (i) 12x, 36
- (ii) 2y, 22xy
- (iii) 14 pq, 28p²q²
- (iv) 2x, $3x^2$, 4
- (v) 6 abc, 24ab², 12a²b
- (vi) $16 x^3$, $-4x^2$, 32 x
- (vii) 10 pq, 20qr, 30 rp (viii) 3x²y³, 10x³y², 6x²y²z

Solution:

- (i) Factors of 12x and 36
- $12x = 2 \times 2 \times 3 \times x$
- $36 = 2 \times 2 \times 3 \times 3$

Common factors of 12x and 36 are 2, 2, 3

- and, $2 \times 2 \times 3 = 12$
- (ii) Factors of 2y and 22xy
- $2y = 2 \times y$
- 22xy = 2x11xxxy

Common factors of 2y and 22xy are 2, y

- and $,2 \times y = 2y$
- (iii) Factors of 14pq and 28p²q
- 14pq = 2x7xpxq
- $28p^2q = 2x2x7xpxpxq$

Common factors of 14 pq and 28 p²q are 2, 7, p, q and, 2x7xpxq = 14pq

- (iv) Factors of 2x, 3x² and 4
- 2x = 2xx
- $3x^2 = 3 \times x \times x$
- 4 = 2x2

Common factors of 2x, $3x^2$ and 4 is 1.

(v) Factors of 6abc, 24ab² and 12a²b

6abc = 2x3xaxbxc

 $24ab^2 = 2x2x2x3xaxbxb$

Common factors of 6 abc, 24ab² and 12a²b are 2, 3, a, b and, $2 \times 3 \times a \times b = 6ab$

(vi) Factors of $16x^3$, $-4x^2$ and 32x

 $-4x^2 = -1 \times 2 \times 2 \times x \times x$

 $32x = 2 \times 2 \times 2 \times 2 \times 2 \times X$

Common factors of 16 x^3 , - $4x^2$ and 32x are 2,2, x and, $2 \times 2 \times x = 4x$

(vii) Factors of 10 pq, 20qr and 30rp

10 pq = 2x5xpxq

 $20qr = 2 \times 2 \times 5 \times q \times r$

 $30rp = 2 \times 3 \times 5 \times r \times p$

Common factors of 10 pq, 20qr and 30rp are 2, 5 and, $2 \times 5 = 10$

(viii) Factors of $3x^2y^3$, $10x^3y^2$ and $6x^2y^2z$

 $3x^2y^3 = 3xxxxxyxyxy$ $10x^3y^2 = 2x5xxxxxxxyxy$ $6x^2y^2z = 3x2xxxxxyxyxz$

Common factors of $3x^2y^3$, $10x^3y^2$ and $6x^2y^2z$ are x^2 , y^2 and, $x^2xy^2 = x^2y^2$

2. Factorise the following expressions

- (i) 7x-42
- (ii) 6p-12q
- (iii) $7a^2 + 14a$
- (iv) $-16z+20z^3$

- (v) 20l²m+30alm (vi) 5x²y-15xy² (vii) 10a²-15b²+20c²
- (viii) -4 a^2 +4ab-4 ca
- (ix) x²yz+xy²z +xyz² (x) ax²y+bxy²+cxyz

Solution:

(i)
$$7x = 7 \times x$$

$$42 = 2 \times 3 \times 7$$

The common factor is 7

$$\therefore 7x - 42 = (7 \times x) - (2 \times 3 \times 7) = 7(x - 6)$$

(ii)
$$6p = 2 \times 3 \times p$$

$$12 q = 2 \times 2 \times 3 \times q$$

The common factors are 2 and 3

$$\therefore$$
 6 p - 12 q = (2 × 3 × p) - (2 × 2 × 3 × q)

$$= 2 \times 3 [p - (2 \times q)]$$

$$= 6(p - 2q)$$

(iii)
$$7a^2 = 7 \times a \times a$$

$$14 a = 2 \times 7 \times a$$

The common factors are 7 and a

$$\therefore 7a^{2} + 14a = (7 \times a \times a) + (2 \times 7 \times a)$$

$$= 7 \times a [a + 2] = 7a (a + 2)$$

(iv)
$$16z = 2 \times 2 \times 2 \times 2 \times z$$

$$20 z^3 = 2 \times 2 \times 5 \times z \times z \times z$$

The common factors are 2, 2, and z.

$$\therefore -16z + 20z^{3} = -(2 \times 2 \times 2 \times 2 \times z) + (2 \times 2 \times 5 \times z \times z \times z)$$

$$= (2 \times 2 \times z) \left[-(2 \times 2) + (5 \times z \times z) \right]$$

$$=4z(-4+5z^2)$$

(v)
$$20l^2m = 2 \times 2 \times 5 \times l \times l \times m$$

$$30 \ alm = 2 \times 3 \times 5 \times a \times l \times m$$

The common factors are 2, 5, I and m

$$\therefore 20 l^2 m + 30 alm = (2 \times 2 \times 5 \times l \times l \times m) + (2 \times 3 \times 5 \times a \times l \times m)$$

$$= (2 \times 5 \times I \times m) [(2 \times I) + (3 \times a)]$$

$$= 10 lm (2l + 3a)$$

(vi)
$$5x^2y = 5 \times x \times x \times y$$

$$15 xy^2 = 3 \times 5 \times x \times y \times y$$

The common factors are 5, x, and y

$$5x^{2}y - 15xy^{2} = (5 \times x \times x \times y) - (3 \times 5 \times x \times y \times y)$$

$$= 5 \times x \times y[x - (3 \times y)]$$

$$= 5xy(x-3y)$$

(vii)
$$10a^2-15b^2+20c^2$$

$$10a^2 = 2 \times 5 \times a \times a$$

$$10a^{2} = 2\times5\times a\times a$$
$$-15b^{2} = -1\times3\times5\times b\times b$$
$$20c^{2} = 2\times2\times5\times c\times c$$

$$20c^2 = 2 \times 2 \times 5 \times c \times c$$

Common factor of 10 a², 15b² and 20c² is 5

$$10a^2-15b^2+20c^2=5(2a^2-3b^2+4c^2)$$

$$(viii) - 4a^2 + 4ab - 4ca$$

$$-4a^2 = -1 \times 2 \times 2 \times a \times a$$

$$4ab = 2 \times 2 \times a \times b$$

$$-4ca = -1 \times 2 \times 2 \times c \times a$$

Common factor of - 4a², 4ab, - 4ca are 2, 2, a i.e. 4a So.

$$-4a^2+4$$
 ab-4 ca = 4a(-a+b-c)

(ix)
$$x^2yz+xy^2z+xyz^2$$

$$x^2yz = x \times x \times y \times z$$

$$xy^2z = x \times y \times y \times z$$

 $xyz^2 = x \times y \times z \times z$

$$xyz^2 = x \times y \times z \times z$$

Common factor of x^2yz , xy^2z and xyz^2 are x, y, z i.e. xyz

Now, $x^2yz+xy^2z+xyz^2 = xyz(x+y+z)$

(x)
$$ax^2y+bxy^2+cxyz$$

$$ax^2y = a \times x \times x \times y$$

$$bxy^2 = b \times x \times y \times y$$

$$cxyz = c \times x \times y \times z$$

Common factors of a x²y ,bxy² and cxyz are xy

Now,
$$ax^2y+bxy^2+cxyz = xy(ax+by+cz)$$

3. Factorise.

- (i) $x^2 + xy + 8x + 8y$
- (ii) 15xy-6x+5y-2
- (iii) ax+bx-ay-by
- (iv) 15pq+15+9q+25p

= (1 - xy) (z - 7)

(v) z-7+7xy-xyz

(i)
$$x^2 + xy + 8x + 8y = x \times x + x \times y + 8 \times x + 8 \times y$$

= $x(x + y) + 8(x + y)$
= $(x + y)(x + 8)$
(ii) $15xy - 6x + 5y - 2 = 3 \times 5 \times x \times y - 3 \times 2 \times x + 5xy - 2$
= $3x(5y - 2) + 1(5y - 2)$
= $(5y - 2)(3x + 1)$
(iii) $ax + bx - ay - by = a \times x + b \times x - a \times y - b \times y$
= $x(a + b) - y(a + b)$
= $(a + b)(x - y)$
(iv) $15pq + 15 + 9q + 25p = 15pq + 9q + 25p + 15$
= $3 \times 5 \times p \times q + 3 \times 3 \times q + 5 \times 5 \times p + 3 \times 5$
= $3q(5p + 3) + 5(5p + 3)$
= $(5p + 3)(3q + 5)$
(v) $z - 7 + 7xy - xyz = z - x \times y \times z - 7 + 7 \times x \times y$
= $z(1 - xy) - 7(1 - xy)$

Exercise 14.2

Page No: 223

1. Factorise the following expressions.

- (i) $a^2+8a+16$
- (ii) $p^2-10p+25$
- (iii) 25m²+30m+9
- (iv) 49 y^2 +84yz+36 z^2
- $(v) 4x^2 8x + 4$
- (vi) 121 b^2 -88bc+16 c^2
- (vii) $(l+m)^2$ -4lm (Hint: Expand $(l+m)^2$ first) (viii) a^4 +2 a^2 b^2 + b^4

- (i) $a^2+8a+16$ = $a^2+2\times4\times a+4^2$ = $(a+4)^2$ Using identity: $(x+y)^2 = x^2+2xy+y^2$
- (ii) $p^2-10p+25$ = $p^2-2x5xp+5^2$ = $(p-5)^2$ Using identity: $(x-y)^2 = x^2-2xy+y^2$
- (iii) $25m^2+30m+9$ = $(5m)^2-2\times5m\times3+3^2$ = $(5m+3)^2$ Using identity: $(x+y)^2 = x^2+2xy+y^2$
- (iv) $49y^2+84yz+36z^2$ = $(7y)^2+2\times7y\times6z+(6z)^2$ = $(7y+6z)^2$ Using identity: $(x+y)^2 = x^2+2xy+y^2$
- (v) $4x^2-8x+4$ = $(2x)^2-2x4x+2^2$ = $(2x-2)^2$ Using identity: $(x-y)^2 = x^2-2xy+y^2$
- (vi) $121b^2-88bc+16c^2$ = $(11b)^2-2\times11b\times4c+(4c)^2$ = $(11b-4c)^2$ Using identity: $(x-y)^2 = x^2-2xy+y^2$

- $(l+m)^2$ -4lm (Hint: Expand $(l+m)^2$ first) Expand $(l+m)^2$ using identity: $(x+y)^2 = x^2 + 2xy + y^2$ $(l+m)^2$ -4lm = l^2 +m²+2lm-4lm = l^2 +m²-2lm (vii) $= (1-m)^2$ Using identity: $(x-y)^2 = x^2-2xy+y^2$
- (viii) $a^4+2a^2b^2+b^4$ = $(a^2)^2 + 2 \times a^{2 \times} b^2 + (b^2)^2$ = $(a^2 + b^2)^2$ Using identity: $(x+y)^2 = x^2+2xy+y^2$

2. Factorise.

- (i) $4p^2 9q^2$
- (ii) $63a^2 112b^2$
- (iii) $49x^2-36$
- (iv) $16x^5-144x^3$ differ (v) $(l+m)^2-(l-m)^2$

- (vi) $9x^2y^2-16$ (vii) $(x^2-2xy+y^2)-z^2$
- (viii) $25a^2-4b^2+28bc-49c^2$

Solution:

(i)
$$4p^2-9q^2$$

= $(2p)^2-(3q)^2$
= $(2p-3q)(2p+3q)$
Using identity: $x^2-y^2 = (x+y)(x-y)$

(ii)
$$63a^2 - 112b^2$$

$$= 7(9a^2 - 16b^2)$$

= 7((3a)²-(4b)²)

$$=7(3a+4b)(3a-4b)$$

Using identity: $x^2-y^2 = (x+y)(x-y)$

(iii)
$$49x^2 - 36$$

$$=(7a)^2-6^2$$

$$= (7a+6)(7a-6)$$

Using identity: $x^2-y^2 = (x+y)(x-y)$

(iv)
$$16x^5 - 144x^3$$

$$=16x^3(x^2-9)$$

$$= 16x^3(x^2-9)$$

=
$$16x^3(x-3)(x+3)$$

Using identity: $x^2-y^2 = (x+y)(x-y)$

$$(v) (l+m)^2-(l-m)^2$$

=
$$\{(l+m)-(l-m)\}\{(l+m)+(l-m)\}$$

Using Identity: $x^2-y^2 = (x+y)(x-y)$

$$= (l+m-l+m)(l+m+l-m)$$

$$=(2m)(21)$$

$$=4 \text{ ml}$$

$$(vi) 9x^2y^2-16$$

$$=(3xy)^2-4^2$$

=
$$(3xy-4)(3xy+4)$$

Using Identity: $x^2-y^2 = (x+y)(x-y)$

(vii)
$$(x^2-2xy+y^2)-z^2$$

$$= (x-y)^2-z^2$$

Using Identity:
$$(x-y)^2 = x^2-2xy+y^2$$

$$= \{(x-y)-z\}\{(x-y)+z\}$$

$$= (x-y-z)(x-y+z)$$
Using Identity: $x^2-y^2 = (x+y)(x-y)$

(viii)
$$25a^2-4b^2+28bc-49c^2$$

$$= 25a^{2} - (4b^{2} - 28bc + 49c^{2})$$

= $(5a)^{2} - \{(2b)^{2} - 2(2b)(7c) + (7c)^{2}\}$
= $(5a)^{2} - (2b - 7c)^{2}$

Using Identity:
$$x^2-y^2 = (x+y)(x-y)$$
, we have $= (5a+2b-7c)(5a-2b-7c)$

3. Factorise the expressions.

- (i) ax^2+bx
- (ii) $7p^2 + 21q^2$
- (iii) $2x^3 + 2xy^2 + 2xz^2$
- (iv) am²+bm²+bn²+an²
- (v) (lm+l)+m+1
- (vi) y(y+z)+9(y+z)
- (vii) $5y^2-20y-8z+2yz$
- (viii) 10ab+4a+5b+2
- (ix)6xy-4y+6-9x

Solution:

(i)
$$ax^2 + bx = x(ax+b)$$

(ii)
$$7p^2+21q^2 = 7(p^2+3q^2)$$

(iii)
$$2x^3+2xy^2+2xz^2=2x(x^2+y^2+z^2)$$

(iv)
$$am^2+bm^2+bn^2+an^2 = m^2(a+b)+n^2(a+b) = (a+b)(m^2+n^2)$$

(v)
$$(lm+l)+m+1 = lm+m+l+1 = m(l+1)+(l+1) = (m+1)(l+1)$$

(vi)
$$y(y+z)+9(y+z) = (y+9)(y+z)$$

(vii)
$$5y^2-20y-8z+2yz = 5y(y-4)+2z(y-4) = (y-4)(5y+2z)$$

(viii)
$$10ab+4a+5b+2 = 5b(2a+1)+2(2a+1) = (2a+1)(5b+2)$$

(ix)
$$6xy-4y+6-9x = 6xy-9x-4y+6 = 3x(2y-3)-2(2y-3) = (2y-3)(3x-2)$$

4. Factorise.

- (i) a^4-b^4
- (ii) p⁴–81
- (iii) $x^4-(y+z)^4$
- $(iv) x^4 (x-z)^4$
- $(v)^{2}a^{4}-2a^{2}b^{2}+b^{4}$

(i)
$$a^4-b^4$$

=
$$(a^2)^2$$
- $(b^2)^2$
= $(a^2$ - $b^2)$ $(a^2$ + $b^2)$
= $(a - b)(a + b)(a^2$ + $b^2)$

$$= (p^2)^2 - (9)^2$$

$$= (p^2 - 9)(p^2 + 9)$$

$$= (p^2 - 3^2)(p^2 + 9)$$

$$= (p - 3)(p + 3)(p^2 + 9)$$

(iii)
$$x^4-(y+z)^4 = (x^2)^2-[(y+z)^2]^2$$

=
$$\{x^2-(y+z)^2\}\{x^2+(y+z)^2\}$$

$$= \{(x - (y+z)(x+(y+z))\{x^2+(y+z)^2\}$$

=
$$(x-y-z)(x+y+z) \{x^2+(y+z)^2\}$$

(iv)
$$x^4-(x-z)^4=(x^2)^2-\{(x-z)^2\}^2$$

=
$$\{x^2-(x-z)^2\}\{x^2+(x-z)^2\}$$

= {
$$x-(x-z)$$
}{ $x+(x-z)$ } { $x^2+(x-z)^2$ }

$$= z(2x-z)(x^2+x^2-2xz+z^2)$$

$$= z(2x-z)(2x^2-2xz+z^2)$$

(v)
$$a^4-2a^2b^2+b^4 = (a^2)^2-2a^2b^2+(b^2)^2$$

$$= (a^2-b^2)^2$$

$$= ((a-b)(a+b))^2$$

5. Factorise the following expressions.

(i)
$$p^2+6p+8$$

(ii)
$$q^2-10q+21$$

(iii) $p^2+6p-16$

Solution:

(i)
$$p^2+6p+8$$

We observed that, $8 = 4 \times 2$ and 4+2 = 6

p²+6p+8 can be written as p²+2p+4p+8 Taking Common terms, we get

$$p^2+6p+8 = p^2+2p+4p+8 = p(p+2)+4(p+2)$$

Again p+2 is common in both the terms.

$$= (p+2)(p+4)$$

This implies: $p^2+6p+8 = (p+2)(p+4)$

Observed that, $21 = -7 \times -3$ and -7 + (-3) = -10

$$q^2$$
-10q+21 = q^2 -3q-7q+21

$$= q(q-3)-7(q-3)$$

$$= (q-7)(q-3)$$

This implies $q^2-10q+21 = (q-7)(q-3)$

(iii)
$$p^2+6p-16$$

We observed that, $-16 = -2 \times 8$ and 8 + (-2) = 6

$$p^2+6p-16 = p^2-2p+8p-16$$

$$= p(p-2)+8(p-2)$$

$$= (p+8)(p-2)$$

So,
$$p^2+6p-16 = (p+8)(p-2)$$

Exercise 14.3

Page No: 227

1. Carry out the following divisions.

- (i) $28x^4 \div 56x$
- $(ii) -36y^3 \div 9y^2$
- (iii) $66pq^2r^3 \div 11qr^2$ (iv) $34x^3y^3z^3 \div 51xy^2z^3$
- $(v)^{1}$ 12 $a^{8}b^{8} \div (-6a^{6}b^{4})$

Solution:

 $(i)28x^4 = 2 \times 2 \times 7 \times x \times x \times x$ $56x = 2 \times 2 \times 2 \times 7 \times X$

$$28x^4 \div 56x = \frac{2 \times 2 \times 7 \times x \times x \times x \times x}{2 \times 2 \times 2 \times 7 \times x} = \frac{x^3}{2} = \frac{1}{2}x^3$$

(ii)
$$-36y^3 \div 9y^2 = \frac{-2 \times 2 \times 3 \times 3 \times y \times y \times y}{3 \times 3 \times y \times y} = -4y$$

(iii)
$$66pq^2r^3 \div 11qr^2 = \frac{2 \times 3 \times 11 \times p \times q \times q \times r \times r \times r}{11 \times q \times r \times r} = 6pqr$$

(iv)
$$34x^3y^3z^3 \div 51xy^2z^3 = \frac{2 \times 17 \times x \times x \times x \times y \times y \times z \times z \times z}{3 \times 17 \times x \times y \times y \times z \times z \times z} = \frac{2}{3}x^2y$$

(v)
$$12a^8b^8 \div (-6a^6b^4) = \frac{2 \times 2 \times 3 \times a^8 \times b^8}{-2 \times 3 \times a^6 \times b^4} = -2 a^2 b^4$$

2. Divide the given polynomial by the given monomial.

$$(i)(5x^2-6x) \div 3x$$

(ii)
$$(3y^8-4y^6+5y^4) \div y^4$$

(iii)
$$8(x^3y^2z^2+x^2y^3z^2+x^2y^2z^3) \div 4x^2y^2z^2$$

$$(iv)(x^3+2x^2+3x) \div 2x$$

(v)
$$(p^3q^6-p^6q^3) \div p^3q^3$$

Solution:

(i)
$$5x^2 - 6x = x(5x - 6)$$

$$(5x^2 - 6x) \div 3x = \frac{x(5x - 6)}{3x} = \frac{1}{3}(5x - 6)$$

(ii)
$$3y^8 - 4y^6 + 5y^4 = y^4(3y^4 - 4y^2 + 5)$$

$$(3y^8 - 4y^6 + 5y^4) \div y^4 = \frac{y^4(3y^4 - 4y^2 + 5)}{y^4} = 3y^4 - 4y^2 + 5$$

(iii)
$$8(x^3y^2z^2 + x^2y^3z^2 + x^2y^2z^3) = 8x^2y^2z^2(x + y + z)$$

$$8(x^{3}y^{2}z^{2} + x^{2}y^{3}z^{2} + x^{2}y^{2}z^{3}) + 4x^{2}y^{2}z^{2} = \frac{8x^{2}y^{2}z^{2}(x + y + z)}{4x^{2}y^{2}z^{2}} = 2(x + y + z)$$

$$(iv)$$
 $x^3 + 2x^2 + 3x = x(x^2 + 2x + 3)$

$$(x^3 + 2x^2 + 3x) + 2x = \frac{x(x^3 + 2x^2 + 3)}{2x} = \frac{1}{2}(x^2 + 2x + 3)$$

$$(v) p^3 q^6 - p^6 q^3 = p^3 q^3 (q^3 - p^3)$$

$$(p^3q^6 - p^6q^3) \div p^3q^3 = \frac{p^3q^3(q^3 - p^3)}{p^3q^3} = q^3 - p^3$$

3. Work out the following divisions.

(ii)
$$(10x-25) \div (2x-5)$$

(iii)
$$10y(6y+21) \div 5(2y+7)$$

(iv)
$$9x^2y^2(3z-24) \div 27xy(z-8)$$

(v)
$$96abc(3a-12)(5b-30) \div 144(a-4)(b-6)$$

Solution:

(i)
$$(10x-25) \div 5 = 5(2x-5)/5 = 2x-5$$

(ii) $(10x-25) \div (2x-5) = 5(2x-5)/(2x-5) = 5$

(iii)
$$10y(6y+21) \div 5(2y+7) = 10y \times 3(2y+7)/5(2y+7) = 6y$$

(iv) $9x^2y^2(3z-24) \div 27xy(z-8) = 9x^2y^2 \times 3(z-8)/27xy(z-8) = xy$

(v)
$$96abc(3a - 12)(5b - 30) \div 144(a - 4)(b - 6) = \frac{96 abc \times 3(a - 4) \times 5(b - 6)}{144(a - 4)(b - 6)} = 10abc$$

4. Divide as directed.

(i)
$$5(2x+1)(3x+5) \div (2x+1)$$

(ii)
$$26xy(x+5)(y-4)\div13x(y-4)$$

(iii)
$$52pqr(p+q)(q+r)(r+p) \div 104pq(q+r)(r+p)$$

(iv)
$$20(y+4) (y^2+5y+3) \div 5(y+4)$$

(v)
$$x(x+1)(x+2)(x+3) \div x(x+1)$$

(i)
$$5(2x+1)(3x+5) \div (2x+1) = \frac{5(2x+1)(3x+5)}{(2x+1)}$$

= $5(3x+5)$

(ii) 26 xy
$$(x + 5) (y - 4) + 13 x (y - 4) = {2 \times 13 \times xy (x + 5) (y - 4) \over 13 x (y - 4)}$$

= 2 y $(x + 5)$

(iii) 52 pqr
$$(p+q)(q+r)(r+p) \div 104 pq (q+r)(r+p)$$

= $\frac{2 \times 2 \times 13 \times p \times q \times r \times (p+q) \times (q+r) \times (r+p)}{2 \times 2 \times 2 \times 13 \times p \times q \times (q+r) \times (r+p)}$

$$=\frac{1}{2}r(p+q)$$

(iv) 20
$$(y+4)(y^2+5y+3)=2\times2\times5\times(y+4)(y^2+5y+3)$$

20
$$(y+4)(y^2+5y+3)+5(y+4)=\frac{2\times2\times5\times(y+4)\times(y^2+5y+3)}{5\times(y+4)}$$

$$=4(y^2+5y+3)$$

$$(v) \ x \ (x+1) \ (x+2) \ (x+3) \ \div x \ (x+1) = \frac{x(x+1) \ (x+2) \ (x+3)}{x(x+1)}$$
$$= (x+2) \ (x+3)$$

5. Factorise the expressions and divide them as directed.

(i)
$$(y^2+7y+10)\div(y+5)$$

(iii)
$$(5p^2-25p+20)\div(p-1)$$

(iv)
$$4yz(z^2+6z-16)\div2y(z+8)$$

(v)
$$5pq(p^2-q^2)\div 2p(p+q)$$

(vi)
$$12xy(9x^2-16y^2)\div 4xy(3x+4y)$$

(vii)
$$39y^3(50y^2-98) \div 26y^2(5y+7)$$

(i)
$$(y^2+7y+10)\div(y+5)$$

First solve for equation, $(y^2+7y+10)$ $(y^2+7y+10) = y^2+2y+5y+10 = y(y+2)+5(y+2) = (y+2)(y+5)$

Now, $(y^2+7y+10)\div(y+5) = (y+2)(y+5)/(y+5) = y+2$

(ii) $(m^2-14m-32) \div (m+2)$

Solve for m²-14m-32, we have

$$m^2-14m-32 = m^2+2m-16m-32 = m(m+2)-16(m+2) = (m-16)(m+2)$$

Now, $(m^2-14m-32)\div(m+2) = (m-16)(m+2)/(m+2) = m-16$

(iii) $(5p^2-25p+20)\div(p-1)$

Step 1: Take 5 common from the equation, 5p²-25p+20, we get

$$5p^2-25p+20 = 5(p^2-5p+4)$$

Step 2: Factorize p²-5p+4

$$p^2-5p+4 = p^2-p-4p+4 = (p-1)(p-4)$$

Step 3: Solve original equation

$$(5p^2-25p+20)\div(p-1) = 5(p-1)(p-4)/(p-1) = 5(p-4)$$

(iv) $4yz(z^2 + 6z-16) \div 2y(z+8)$

Factorize $z^2+6z-16$,

$$z^2+6z-16 = z^2-2z+8z-16 = (z-2)(z+8)$$

Now,
$$4yz(z^2+6z-16) \div 2y(z+8) = 4yz(z-2)(z+8)/2y(z+8) = 2z(z-2)$$

(v) $5pq(p^2-q^2) \div 2p(p+q)$

 p^2-q^2 can be written as (p-q)(p+q) using identity.

$$5pq(p^2-q^2) \div 2p(p+q) = 5pq(p-q)(p+q)/2p(p+q) = 5/2q(p-q)$$

(vi)
$$12xy(9x^2-16y^2) \div 4xy(3x+4y)$$

Factorize $9x^2-16y^2$, we have

$$9x^2-16y^2 = (3x)^2-(4y)^2 = (3x+4y)(3x-4y)$$
 using identity: $p^2-q^2 = (p-q)(p+q)$

Now,
$$12xy(9x^2-16y^2) \div 4xy(3x+4y) = 12xy(3x+4y)(3x-4y)/4xy(3x+4y) = 3(3x-4y)$$

(vii)
$$39y^3(50y^2-98) \div 26y^2(5y+7)$$

First solve for $50y^2$ –98, we have

$$50y^2-98 = 2(25y^2-49) = 2((5y)^2-7^2) = 2(5y-7)(5y+7)$$

Now,
$$39y^3(50y^2-98) \div 26y^2(5y+7) =$$

$$\frac{3 \times 13 \times y^3 \times 2(5y - 7)(5y + 7)}{2 \times 13 \times y^2(5y + 7)} = 3y(5y - 7)$$

Exercise 14.4

Page No: 228

Find and correct the errors in the following mathematical statements.

1.
$$4(x-5) = 4x-5$$

Solution:

$$4(x-5)=4x-20 \neq 4x-5=RHS$$

The correct statement is 4(x-5) = 4x-20

2.
$$x(3x+2) = 3x^2+2$$

Solution:

LHS =
$$x(3x+2) = 3x^2+2x \neq 3x^2+2 = RHS$$

The correct solution is $x(3x+2) = 3x^2+2x$

3.
$$2x+3y = 5xy$$

Solution:

LHS=
$$2x+3y \neq R$$
. H. S

The correct statement is 2x+3y = 2x+3y

4.
$$x+2x+3x = 5x$$

Solution:

LHS =
$$x+2x+3x = 6x \neq RHS$$

The correct statement is x+2x+3x = 6x

5.
$$5y+2y+y-7y=0$$

Solution:

LHS =
$$5y+2y+y-7y = y \neq RHS$$

The correct statement is 5y+2y+y-7y = y

6.
$$3x+2x = 5x^2$$

Solution:

LHS =
$$3x+2x = 5x \neq RHS$$

The correct statement is 3x+2x = 5x

7.
$$(2x)^2+4(2x)+7=2x^2+8x+7$$

Solution:

LHS =
$$(2x)^2 + 4(2x) + 7 = 4x^2 + 8x + 7 \neq RHS$$

The correct statement is $(2x)^2+4(2x)+7 = 4x^2+8x+7$

8.
$$(2x)^2+5x = 4x+5x = 9x$$

Solution:

LHS =
$$(2x)^2 + 5x = 4x^2 + 5x \neq 9x = RHS$$

The correct statement is $(2x)^2 + 5x = 4x^2 + 5x$

9.
$$(3x + 2)^2 = 3x^2 + 6x + 4$$

Solution:

LHS =
$$(3x+2)^2 = (3x)^2 + 2^2 + 2x2x3x = 9x^2 + 4 + 12x \neq RHS$$

The correct statement is $(3x + 2)^2 = 9x^2+4+12x$

10. Substituting x = -3 in

(a)
$$x^2 + 5x + 4$$
 gives $(-3)^2 + 5(-3) + 4 = 9 + 2 + 4 = 15$

(b)
$$x^2 - 5x + 4$$
 gives $(-3)^2 - 5(-3) + 4 = 9 - 15 + 4 = -2$

(c)
$$x^2 + 5x$$
 gives $(-3)^2 + 5(-3) = -9 - 15 = -24$

(a) Substituting
$$x = -3$$
 in x^2+5x+4 , we have

$$x^2+5x+4 = (-3)^2+5(-3)+4 = 9-15+4 = -2$$
. This is the correct answer.

(b) Substituting
$$x = -3$$
 in x^2-5x+4

$$x^2-5x+4 = (-3)^2-5(-3)+4 = 9+15+4 = 28$$
. This is the correct answer

(c) Substituting
$$x = -3$$
 in x^2+5x

$$x^2+5x = (-3)^2+5(-3) = 9-15 = -6$$
. This is the correct answer

$$11.(y-3)^2 = y^2-9$$

Solution:

LHS = $(y-3)^2$, which is similar to $(a-b)^2$ identity, where $(a-b)^2 = a^2+b^2-2ab$.

$$(y-3)^2 = y^2 + (3)^2 - 2y \times 3 = y^2 + 9 - 6y \neq y^2 - 9 = RHS$$

The correct statement is $(y-3)^2 = y^2 + 9 - 6y$

12.
$$(z+5)^2 = z^2+25$$

Solution:

LHS = $(z+5)^2$, which is similar to $(a+b)^2$ identity, where $(a+b)^2 = a^2+b^2+2ab$.

$$(z+5)^2 = z^2+5^2+2\times5\times z = z^2+25+10z \neq z^2+25 = RHS$$

The correct statement is $(z+5)^2 = z^2+25+10z$

13.
$$(2a+3b)(a-b) = 2a^2-3b^2$$

Solution:

LHS = (2a+3b)(a-b) = 2a(a-b)+3b(a-b) $= 2a^2 - 2ab + 3ab - 3b^2$

= $2a^2+ab-3b^2$ $\neq 2a^2-3b^2 = RHS$

The correct statement is $(2a +3b)(a -b) = 2a^2+ab-3b^2$

14.
$$(a+4)(a+2) = a^2+8$$

Solution:

LHS = (a+4)(a+2) = a(a+2)+4(a+2) $= a^2 + 2a + 4a + 8$

 $= a^2 + 6a + 8$

 \neq a²+8 = RHS

The correct statement is $(a+4)(a+2) = a^2+6a+8$

15.
$$(a-4)(a-2) = a^2-8$$

Solution:

LHS =
$$(a-4)(a-2) = a(a-2)-4(a-2)$$

= $a^2-2a-4a+8$
= a^2-6a+8
 $\neq a^2-8 = RHS$

The correct statement is $(a-4)(a-2) = a^2-6a+8$

16.
$$3x^2/3x^2 = 0$$

Solution:

LHS =
$$3x^2/3x^2 = 1 \neq 0 = RHS$$

The correct statement is $3x^2/3x^2 = 1$

17.
$$(3x^2+1)/3x^2=1+1=2$$

Solution:

LHS =
$$(3x^2+1)/3x^2 = (3x^2/3x^2)+(1/3x^2) = 1+(1/3x^2) \neq 2$$
 = RHS

The correct statement is $(3x^2+1)/3x^2 = 1+(1/3x^2)$

18. $3x/(3x+2) = \frac{1}{2}$

Solution:

LHS =
$$3x/(3x+2) \neq 1/2 = RHS$$

The correct statement is 3x/(3x+2) = 3x/(3x+2)

19. 3/(4x+3) = 1/4x

Solution:

LHS =
$$3/(4x+3) \neq 1/4x$$

The correct statement is 3/(4x+3) = 3/(4x+3)

20.
$$(4x+5)/4x = 5$$

Solution:

LHS =
$$(4x+5)/4x = 4x/4x + 5/4x = 1 + 5/4x \neq 5 = RHS$$

The correct statement is (4x+5)/4x = 1 + (5/4x)

21.
$$\frac{7x+5}{5}$$
= 7x

Solution:

LHS =
$$(7x+5)/5 = (7x/5)+5/5 = (7x/5)+1 \neq 7x = RHS$$

The correct statement is (7x+5)/5 = (7x/5) + 1