Exercise 7.1 Page: 114

${\bf 1.}\ Which\ of\ the\ following\ numbers\ are\ not\ perfect\ cubes?$

(i) 216

Solution:

By resolving 216 into prime factor,

2	216
2	108
2	54
3	27
3	9
3	3
-	1

 $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$

By grouping the factors in triplets of equal factors, $216 = (2 \times 2 \times 2) \times (3 \times 3 \times 3)$

Here, 216 can be grouped into triplets of equal factors,

$$\therefore 216 = (2 \times 3) = 6$$

Hence, 216 is cube of 6.

(ii) 128

Solution:

By resolving 128 into prime factor,

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

 $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$

By grouping the factors in triplets of equal factors,

 $128 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 2$

Here, 128 cannot be grouped into triplets of equal factors, we are left of with one factors $\boldsymbol{2}$.

∴ 128 is not a perfect cube.

(iii) 1000

Solution:

By resolving 1000 into prime factor,

2	1000
2	500
2	250
5	125
5	25
5	5
	1
0	

 $1000 = 2 \times 2 \times 2 \times 5 \times 5 \times 5$

By grouping the factors in triplets of equal factors, $1000 = (2 \times 2 \times 2) \times (5 \times 5 \times 5)$

Here, 1000 can be grouped into triplets of equal factors,

$$1000 = (2 \times 5) = 10$$

Hence, 1000 is cube of 10.

(iv) 100 Solution:

Joiution.

By resolving 100 into prime factor,

2	100
2	50
5	25
5	5
	1

$$100 = 2 \times 2 \times 5 \times 5$$

Here, 100 cannot be grouped into triplets of equal factors.

∴ 100 is not a perfect cube.

(v) 46656

Solution:

By resolving 46656 into prime factor,

,	
2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

By grouping the factors in triplets of equal factors, $46656 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (3 \times 3 \times 3) \times (3 \times 3 \times 3)$ Here, 46656 can be grouped into triplets of equal factors,

 $46656 = (2 \times 2 \times 3 \times 3) = 36$

Hence, 46656 is cube of 36.

2. Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube.

(i) 243

Solution:

By resolving 243 into prime factor,

3	243
3	81
3	27
3	9
3	3
	1

 $243 = 3 \times 3 \times 3 \times 3 \times 3$

By grouping the factors in triplets of equal factors, $243 = (3 \times 3 \times 3) \times 3 \times 3$ Here, 3 cannot be grouped into triplets of equal factors.

∴ We will multiply 243 by 3 to get perfect square.

(ii) 256

Solution:

By resolving 256 into prime factor,

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

By grouping the factors in triplets of equal factors, 256 = $(2\times2\times2)\times(2\times2\times2)\times2\times2$

Here, 2 cannot be grouped into triplets of equal factors.

: We will multiply 256 by 2 to get perfect square.

Solution:

By resolving 72 into prime factor,

2	72
2	36
2	18
3	9
3	3
	1

 $72 = 2 \times 2 \times 2 \times 3 \times 3$

By grouping the factors in triplets of equal factors, $72 = (2 \times 2 \times 2) \times 3 \times 3$

Here, 3 cannot be grouped into triplets of equal factors.

∴ We will multiply 72 by 3 to get perfect square.

(iv) 675

Solution:

By resolving 675 into prime factor,

3	675
3	225
3	75
5	25
5	5
	1

 $675 = 3 \times 3 \times 3 \times 5 \times 5$

By grouping the factors in triplets of equal factors, 675 = $(3\times3\times3)\times5\times5$

Here, 5 cannot be grouped into triplets of equal factors.

∴ We will multiply 675 by 5 to get perfect square.

(v) 100 Solution:

By resolving 100 into prime factor,

2	100
2	50
5	25
5	5
	1

 $100 = 2 \times 2 \times 5 \times 5$

Here, 2 and 5 cannot be grouped into triplets of equal factors.

 \therefore We will multiply 100 by (2×5) 10 to get perfect square.

3. Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube.

(i) 81

Solution:

By resolving 81 into prime factor,

,	I
3	81
3	27
3	9
3	3
-	1

 $81 = 3 \times 3 \times 3 \times 3$

By grouping the factors in triplets of equal factors, $81 = (3 \times 3 \times 3) \times 3$

Here, 3 cannot be grouped into triplets of equal factors.

∴ We will divide 81 by 3 to get perfect square.

(ii) 128

Solution:

By resolving 128 into prime factor,

2	128
2	64
2	32
2	16
2	8
2	4
2	2
91	1

By grouping the factors in triplets of equal factors, $128 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 2$

Here, 2 cannot be grouped into triplets of equal factors.

∴ We will divide 128 by 2 to get perfect square.

(iii) 135

Solution:

By resolving 135 into prime factor,

3	135
3	45
3	15
5	5
	1

 $135 = 3 \times 3 \times 3 \times 5$

By grouping the factors in triplets of equal factors, $135 = (3 \times 3 \times 3) \times 5$ Here, 5 cannot be grouped into triplets of equal factors.

∴ We will divide 135 by 5 to get perfect square.

(iv) 192

Solution:

By resolving 192 into prime factor,

2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

 $192 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$

By grouping the factors in triplets of equal factors, $192 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 3$ Here, 3 cannot be grouped into triplets of equal factors.

∴ We will divide 192 by 3 to get perfect square.

(v) 704

Solution:

By resolving 704 into prime factor,

- 1	
2	704
2	352
2	176
2	88
2	44
2	22
11	11
	1

 $704 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11$

By grouping the factors in triplets of equal factors, $704 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 11$

Here, 11 cannot be grouped into triplets of equal factors.

∴ We will divide 704 by 11 to get perfect square.

4. Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube?

Solution:

Given, side of cube is 5 cm, 2 cm and 5 cm.

$$\therefore$$
 Volume of cube = $5 \times 2 \times 5 = 50$

2	50
5	25
5	5
	1

$$50 = 2 \times 5 \times 5$$

Here, 2, 5 and 5 cannot be grouped into triplets of equal factors.

∴ We will multiply 50 by (2×2×5) 20 to get perfect square. Hence, 20 cuboid is needed.