Strictly Confidential: (For Internal and Restricted use only) Senior School Certificate Examination
 Compartment July 2019
 Marking Scheme
 PHYSICS (SUBJECT CODE 042)
 (PAPER CODE - 55/1/1)

General Instructions: -

1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a $\mathbf{1 0 - 1 2}$ days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
4. Evaluators will mark $(\sqrt{ })$ wherever answer is correct. For wrong answer ' X ' be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
6. If a question does not have any parts, marks must be awarded in the left hand margin and encircled.This may also be followed strictly
7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
9. A full scale of marks $0-70$ has to be used. Please do not hesitate to award full marks if the answer deserves it.
10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 / 25 answer books per day.
11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as (X) and awarded zero (0)Marks.
13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

MARKING SCHEME (COMPARTMENT) 2019

SET: 55/1/1

\begin{tabular}{|c|c|c|c|}
\hline Q. NO. \& VALUE POINTS/ EXPECTED ANSWERS \& MARKS \& \[
\begin{aligned}
\& \text { TOTAL } \\
\& \text { MARKS }
\end{aligned}
\] \\
\hline \multicolumn{4}{|c|}{SECTION - A} \\
\hline 1. \& \begin{tabular}{l}
Definition of angle of inclination: The angle which earth's magnetic field at a given place makes with the horizontal. \\
Alternatively \\
Angle between \(\overrightarrow{B_{E}}\) and \(\vec{H}\) \\
Alternatively \\
Angle \(\Theta\), in the given figure represents the angle of inclination.
\end{tabular} \& 1 \& 1 \\
\hline 2. \& \begin{tabular}{l}
Most energetic radiation: Gamma rays Frequency range: \(10^{18}\) to \(10^{23} \mathrm{~Hz}\) \\
OR \\
(i) Ultra violet rays \\
(ii) Frequency range: \(10^{15}\) to \(10^{17} \mathrm{~Hz}\)
\end{tabular} \& \[
\begin{gathered}
1 / 2 \\
1 / 2 \\
\\
1 / 2 \\
1 / 2
\end{gathered}
\] \& 1

1

\hline 3. \& | Frequency of photon $\begin{aligned} & \mathrm{v}=\mathrm{E} / \mathrm{h} \\ & =\frac{2 \mathrm{eV}}{6.63 \times 10^{-34} \mathrm{Js}} \\ & =\frac{2 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} \mathrm{~Hz} \\ & =4.8 \times 10^{14} \mathrm{~Hz} \end{aligned}$ |
| :--- |
| [Award the last $1 / 2$ mark even if the student just makes a correct substitution but does not calculate the value of v] |
| OR |
| (i) Yes |
| (ii) The photo electric current is dependent on the intensity of incident radiation Because the change of intensity changes the number of photons incident per second on the photo sensitive surface. | \& | $1 / 2$ |
| :--- |
| $1 / 2$ |
| $1 / 2$ $1 / 2$ | \& 1

1

\hline 4. \& Saturation property/ Short range nature of nuclear force \& 1 \& 1

\hline 5. \& | Frequency range of the spectrum occupied by the signal. |
| :--- |
| Alternatively |
| Difference between the maximum and minimum frequencies considered essential for a given message signal | \& 1 \& 1

\hline
\end{tabular}

	$\frac{\text { Alternatively }}{\text { Band width }=v_{\max }-v_{\min }}$		
SECTION- B			
6.	Expression for flux 1 Calculation of flux 1 Net outward flux through the cylinder $\begin{aligned} & \vec{E} \cdot \overrightarrow{\Delta S}=\vec{E} \cdot \Delta \overrightarrow{S_{1}}+\vec{E} \cdot \Delta \overrightarrow{S_{2}}+\vec{E} \cdot \Delta \overrightarrow{S_{3}} \\ & =(100+100) \pi r^{2}+0 \quad\left(\text { Here } \cos \theta=\cos 90^{0}=0 \text { for } \Delta S_{3}\right) \\ & =\left[200 \times 3.14 \times(0.05)^{2}\right] \quad \mathrm{Nm}^{2} / \mathrm{C} \\ & \quad=1.57 \mathrm{Nm}^{2} / \mathrm{C} \end{aligned}$ Alternatively: Flux through right circular surface $\phi_{1}=\vec{E} \cdot \overrightarrow{\Delta S}$ $=100 \Delta S$ Flux through left circular surface $\phi_{2=} \vec{E} \cdot \overrightarrow{\Delta S}$ $=100 \Delta S$ Flux through the curved surface $\phi_{3} \vec{E} \cdot \overrightarrow{\Delta S}$ $=0$ Net Flux $\quad \phi=\phi_{1}+\phi_{2}+\phi_{3}$ $\begin{aligned} & =200 \Delta S \\ & =\left[200 \times 3.14 \times(0.05)^{2}\right] \mathrm{Nm}^{2} \mathrm{C}^{-1} \\ & =1.57 \mathrm{Nm}^{2} \mathrm{C}^{-1} \end{aligned}$	1/2	2
7.	Formula for Induced Emf 1 Calculation of Induced Emf 1$\begin{gathered} E=\frac{1}{2} B \omega r^{2} \\ =\left[\frac{1}{2} \times 8 \times 10^{-5} \times 4 \pi \times(0.5)^{2}\right] V \end{gathered}$	1 $1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
=12.56 \times 10^{-5} \mathrm{~V}
\] \\
OR
\[
\begin{aligned}
\& \varepsilon=\frac{-d \phi}{d t} \\
\&=-A \frac{d B}{d t} \\
\&=-A \frac{d B}{d x} \times \frac{d x}{d t}=-A v \frac{d B}{d x} \\
\&=-\left[(0.1)^{2} \times\left(-8 \times 10^{-3}\right)\right] V \\
\&= 8 \times 10^{-5} \mathrm{~V}
\end{aligned}
\]
\end{tabular} \& 1/2 \& 2 \\
\hline 8. \& \begin{tabular}{l}
(a) Graph of em wave \\
(b) (i) Relation between \(\mathrm{c}, \mathrm{E}_{0}\) and \(\mathrm{B}_{0}\) \\
(a) \\
(b) \\
(i) \(c=\frac{E_{0}}{B_{0}}\) \\
(ii) \(c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}\)
\end{tabular} \& 1

$1 / 2$
$1 / 2$ \& 2

\hline 9. \& Expression for wavelength in terms of the quantum number of the orbit Ratio of wavelengths in the two orbits

$$
\begin{gathered}
2 \pi r_{n}=n \lambda_{n} \\
r_{n}=a_{0} n^{2} \\
\therefore \lambda_{n}=2 \pi a_{0} n
\end{gathered}
$$ \& $1 / 2$

$1 / 2$
1 \& 2

\hline
\end{tabular}

	$=\frac{\lambda_{1}}{\lambda_{2}}=\frac{1}{2}$		
10.	Cause of attenuation 1 Factors affecting the range 1 Cause: absorption of waves by earth Factors: (i) Transmitted Power (ii) Frequency	1 $1 / 2$ $1 / 2$	2
11.	Diagram $1 / 2$ Electric field due to point charges $1 / 2$ Net electric field 1$\begin{gathered} E_{+q}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{\left(r^{2}+a^{2}\right)} \\ E_{-q}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{\left(r^{2}+a^{2}\right)} \\ E=E_{+q} \cos \theta+E_{-q} \cos \theta \\ \quad=2 E_{+q} \cos \theta \\ =\frac{2 q a}{4 \pi \epsilon_{0}\left(r^{2}+a^{2}\right)^{3 / 2}} \end{gathered}$ OR	1/2	2

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Torque \(\tau=p E \sin \theta\)
\[
\begin{aligned}
\& \text { P.E. }=W=\int_{\theta_{0}}^{\theta} p E \sin \theta d \theta \\
\& =-p E\left(\cos \theta-\cos \theta_{0}\right) \\
\& =-p E \cos \theta \quad\left(\text { for } \theta_{0}=\pi / 2\right)
\end{aligned}
\] \\
\(\therefore\) Minimum value of P.E. \(=-\mathrm{pE}\) \\
[Note: Award the last \(1 / 2\) mark even if the student quotes zero (0) as the minimum value of P.E. which corresponds to the choice \(\theta_{0}=0\) (or writes that this cannot be precisely specified as it depends on the choice of \(\theta_{0}\))]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 2 \\
\hline 12. \& \begin{tabular}{l}
(a) Effect + Reason \\
\(1 / 2+1 / 2\) \\
(b) Effect + Reason \\
(a) \(I=\frac{V}{\sqrt{R^{2}+\omega^{2} L^{2}}}\) \\
When \(\omega\) increases, I decreases, \(\therefore\) brightness decreases \\
(b) \(I=\frac{V}{\sqrt{R^{2}+\frac{1}{\omega^{2} c^{2}}}}\) \\
When \(\omega\) increases, I increases, \(\therefore\) brightness increases \\
Alternatively: \\
(a) Brightness decreases \\
Reason: The impedance of \(L\) increases with an increase in angular frequency \(\omega\) \\
(b) Brightness increases \\
Reason: The impedance of C decreases with an increase in angular frequency \(\omega\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 2

\hline \& SECTION- C \& \&

\hline 13. \& | (a) Drift Velocity and its significance $1 / 2+1 / 2$
 Relaxation time and its significance $1 / 2+1 / 2$
 (b) Change in drift velocity 1 |
| :--- |
| (a) | \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& and \(\quad r_{e f f}=\frac{r_{1} r_{2}}{r_{1}+r_{2}}\) \& 1/2 \& 3 \\
\hline 14. \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline (a) Correct sequence of bands \& 1 \\
(b) Two characteristic properties \& \(1 / 2+1 / 2\) \\
(c) Precautions (any two) \& \(1 / 2+1 / 2\) \\
\hline
\end{tabular} \\
(a) Green, blue, orange, silver \\
[Award \(1 / 2\) mark if two colours are correct in the sequence] \\
(b) (i) High resistivity \\
(ii) Low temperature coefficient of resistivity \\
(c) (i) Uniformity of wire \\
(ii) Balance point near the mid point of the wire \\
(Also accept any other relevant precaution)
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 3 \\
\hline 15. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline (a) Reason for using shunt for conversion to ammeter \& 1 \\
(b) Formula for shunt resistance \& 1 \\
(c) Calculation of shunt resistance \& 1 \\
\hline
\end{tabular} \\
(a) The ammeter is connected in series, in the relevant circuit branch. Hence its resistance must be (very) low so that the circuit current is not affected. A (very) low shunt resistance makes the effective resistance of galvanometer (very) low. (as required). \\
(b)
\[
\begin{aligned}
\& S=\frac{I_{g} G}{I-I_{g}} \\
\& =\frac{6 \times 10^{-3} \times 15}{\left[6-\left(6 \times 10^{-3}\right)\right]} \Omega \\
\& \approx 0.015 \Omega
\end{aligned}
\]
\end{tabular} \& 1

1
1
$1 / 2$
$1 / 2$ \& 3

\hline 16. \& | (a) Reason for circular motion 1
 Expression for radius 1
 (b) Path of the particle when $\Theta \neq 90^{\circ}$ 1 |
| :--- |
| (a) $\quad \vec{F}=q(\vec{v} \times \overrightarrow{B)}$ |
| Force \vec{F} on a moving charged particle in a magnetic field acts perpendicular to the velocity vector at all instants. It therefore, changes only the direction of velocity without changing its magnitude. This results in a circular motion of the particle for which the force \vec{F} provides the needed centripetal force $\left(=\frac{m v^{2}}{r}\right)$ $\text { Here } \begin{aligned} \mathrm{F} & =\mathrm{qvB} \sin \Theta \\ & =\mathrm{qvB} \quad(\text { as } \Theta=\pi / 2) \end{aligned}$ | \& $1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

	Working: When object is placed just beyond the focus of objective lens, the objective forms a real and highly magnified image of the object. This image is formed at the focus of the eye piece or at a point whose distance from the eye piece is less than the focal length of the eye piece. The eye piece then forms a (virtual) magnified image of the image formed by the objective. (b)Both the objective and the eye piece must have short focal lengths for high magnification.	$1 / 2$ $1 / 2$ $1 / 2+1 / 2$	3
18.	Ray diagram 1 Derivation of lens formula 2 $\triangle A^{\prime} B^{\prime} P \sim \triangle A B P$ $\frac{A^{\prime} B^{\prime}}{A B}=\frac{B^{\prime} P}{B P}$ \qquad $\triangle A^{\prime} B^{\prime} F \sim \triangle M P F$ $\frac{A^{\prime} B^{\prime}}{M P}=\frac{B^{\prime} F}{P F}$ or $\quad \frac{A^{\prime} B^{\prime}}{A B}=\frac{B^{\prime} F}{P F}$ From (i) and (ii) $\frac{B^{\prime} P}{B P}=\frac{B^{\prime} F}{P F}$	1	

	(a) Path difference, NP-LP=NQ $\begin{aligned} & =\mathrm{a} \sin \theta \\ & \approx a \theta \end{aligned}$ At C on the screen, $\theta=0^{0}$. All path differences are zero and hence all wavelets meet in phase and produce a maxima at C . At points P on the screen for which path difference is $\lambda, 2 \lambda, 3 \lambda, \ldots \ldots \mathrm{n} \lambda$; the wavelets will cancel each other in pairs and produce minima. $\therefore a \theta=n \lambda-------- \text { condition for minima }$ $(n=1,2, \ldots \ldots \ldots)$ At points P on the screen for which path difference is $\frac{\lambda}{2}, 3 \frac{\lambda}{2}, \ldots \ldots \ldots \ldots$, $(2 n+1) \frac{\lambda}{2}$ The wavelets produce a maxima due to one uncancelled part of the wavefront. $\begin{gathered} \therefore a \theta=(2 n+1) \frac{\lambda}{2}-\cdots---- \text { condition for maxima } \\ (\mathrm{n}=1,2, \ldots \ldots \ldots) \end{gathered}$ (b) separation between $1^{\text {st }}$ secondary maxima of the two wavelengths $\begin{aligned} & =\frac{3 D}{2 d}\left(\lambda_{2}-\lambda_{1}\right) \\ & =\frac{3 \times 1.5}{2 \times 2 \times 10^{-4}} \times 60 \times 10^{-10} \mathrm{~m} \\ & =67.5 \times 10^{-6} \mathrm{~m} \\ & =67.5 \mu \mathrm{~m} \end{aligned}$	1/2	3
20.	(a) Graph 1 (b) Einstein's equation 1 Two factors which cannot be explained by wave theory $1 / 2+1 / 2$		

	(a) (b) Einstein's photoelectric equation $K_{\max }=h v-\emptyset_{0}$ Alternatively $e V_{0}=h v-\emptyset_{0}$ Alternatively $e V_{0}=h v-h v_{0}$ Two Factors: (i) Maximum KE of emitted photoelectrons is independent of the intensity of incident radiation (ii) There is a threshold frequency below which photo electrons are not emitted [OR any other valid factor]	1	3
21.	(a) Highest energy level to which atom will be excited (b) Calculation of longest Lyman wavelength (c) Calculation of longest Balmer wavelength (a) Maximum Energy that the excited hydrogen atom can have is $\begin{aligned} & \mathrm{E}=-13.6 \mathrm{eV}+12.5 \mathrm{eV}=-1.1 \mathrm{eV} \\ & \text { Now } E_{3}=\frac{-13.6}{3^{2}} \mathrm{eV}=-1.5 \mathrm{eV} \quad(<(-1.1 \mathrm{eV})) \\ & E_{4}=\frac{-13.6}{4^{2}} \mathrm{eV}=-0.85 \mathrm{eV} \quad(>(-1.1 \mathrm{eV})) \end{aligned}$ It follows that the electron can only be excited up to the $\mathrm{n}=3$ state. (b) Longest wavelength of Lyman series: $\begin{gathered} \frac{1}{\lambda_{L}}=R\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]=R \cdot \frac{3}{4} \\ \therefore \lambda_{L}=\frac{4}{3} \times \frac{1}{R} \\ =\frac{4}{3 \times 1.1 \times 10^{7}} m \cong 1218 A^{0} \end{gathered}$ Longest wavelength of Balmer series: $\frac{1}{\lambda_{B}}=R\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]$	1/2	

	$\begin{gathered} =\frac{5 R}{36} \\ \lambda_{B}=\left(\frac{36^{2}}{5 \times 1.1 \times 10^{7}}\right) m \approx 6560 A^{0} \end{gathered}$	1/2	3
22.	(a) Name and Principle of the device $1 / 2+1 / 2$ (b) Circuit diagram 1 Working $1 / 2$ (c) I-V characteristics $1 / 2$ (a) Zener diode is used as a voltage regulator It works on the principle that after the breakdown voltage V_{Z}, a large change in the reverse current can be produced by an almost insignificant change in the reverse bias voltage Alternatively: The Zener Voltage remains constant, even when the current through the Zener diode varies over a wide range. (b) If the input voltage increases the current through R_{S} and Zener diode also increases. This increases the voltage drop across R_{S} without any change in the voltage across the Zener diode. If input voltage decreases, the current through R_{S} and Zener diode decreases. The voltage across R_{S} decreases without any change in voltage across the Zener diode. (c) OR (a) Truth tables of AND and NOT gates $1+1 / 2$ (b) Obtaining OR gate from NAND gates $111 / 2$	1/2	3

		1/2	3
24.	(a) Explanation of amplitude modulation $11 / 2$ (b) Calculation of modulation index $11 / 2$ [Note: Award 1 mark here if the student just draws the diagram of the amplitude, modulated wave without drawing the 'carrier wave' and the 'message signal' diagrams] (b) $\begin{gathered} a_{m}+a_{c}=20 \mathrm{~V} \\ a_{c}-a_{m}=5 \mathrm{~V} \end{gathered}$	$1 / 2$ $1 / 2$ $1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& $$
\begin{array}{r}
\Rightarrow a_{c}=12.5 \mathrm{~V} \\
a_{m}=12.5 \mathrm{~V} \\
\text { Modulation index } \mu=\frac{a_{m}}{a_{c}} \\
=\frac{7.5}{12.5}=0.6
\end{array}
$$ \& $1 / 2$

$1 / 2$
$1 / 2$ \& 3

\hline \multicolumn{4}{|c|}{SECTION - D}

\hline 25. \& | (a) Derivation of expression for the resultant capacitance in (i) parallel (ii) series |
| :--- |
| (a) (i) Parallel $\mathrm{Q}_{1}=\mathrm{C}_{1} \mathrm{~V},$ $\mathrm{Q}_{2}=\mathrm{C}_{2} \mathrm{~V}$ $\mathrm{Q}_{3}=\mathrm{C}_{3} \mathrm{~V}$ $\begin{gathered} \text { But } \mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3} \\ \therefore \mathrm{Q}=\mathrm{C}_{1} \mathrm{~V}+\mathrm{C}_{2} \mathrm{~V}+\mathrm{C}_{3} \mathrm{~V} \\ \therefore \mathrm{CV}=\mathrm{C}_{1} \mathrm{~V}+\mathrm{C}_{2} \mathrm{~V}+\mathrm{C}_{3} \mathrm{~V} \\ C=C_{1}+C_{2}+C_{3} \end{gathered}$ |
| (ii) Series |
| Potential difference across the plates of the three capacitors are: $\begin{aligned} & V_{1}=\frac{Q}{C_{1}} \\ & V_{2}=\frac{Q}{C_{2}} \end{aligned}$ | \& $1 / 2$

$1 / 2$

1 \&

\hline
\end{tabular}

$$
\begin{gathered}
V_{3}=\frac{Q}{C_{3}} \\
\text { But } \mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \\
V=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}+\frac{Q}{C_{3}} \\
\therefore \frac{Q}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \\
\therefore \frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}
\end{gathered}
$$

$$
\begin{aligned}
& =12 \mathrm{~V}-4 \mathrm{~V} \\
& =8 \mathrm{~V}
\end{aligned}
$$

Energy stored on this capacitor

$$
\begin{gathered}
U=\frac{1}{2} C V^{2} \\
=\frac{1}{2}\left(12 \times 10^{-6}\right) 8^{2} \text { joule } \\
=6 \mathrm{X} 64 \times 10^{-6} \text { joule } \\
=384 \times 10^{-6} \mathrm{~J} \\
=384 \mu \mathrm{~J}
\end{gathered}
$$

OR
(a) Derivation of expression for the Electric field
(i) inside (ii) outside
(b) Graphical variation of the Electric field
(c) Calculation of Electric flux
(a) (i) Inside

The point P is inside the spherical shell. The Gaussian surface is a sphere through P centered at ' O '

Flux through this surface $=\mathrm{E} \times 4 \pi \mathrm{r}^{2}$

	$\begin{aligned} & =\mathrm{EA} \cos \Theta \\ & =200 \times 0.01 \times \cos 60^{0} \\ & =1.0 \mathrm{Nm}^{2} / \mathrm{C} \end{aligned}$ [Note: The student may do the calculation by taking $\Theta=30^{\circ}$ and get $\sqrt{3} \mathrm{Nm}^{2} / \mathrm{C}$ as the answer. In that case award $1 / 2$ mark only for part (c)]	1/2	5
26.	(a) Power at any instant ' t ' $\begin{gathered} \mathrm{P}=\mathrm{Vi} \\ =\left(V_{m} \sin w t\right)\left(i_{m} \sin (w t+\varphi)\right) \\ =\frac{V_{m} i_{m}}{2}(2 \sin w t \sin (w t+\varphi)) \\ =\frac{V_{m} i_{m}}{2}[\cos \varphi-\cos (2 w t+\varphi)] \end{gathered}$ The term $\cos (2 w t+\varphi)$ is time dependent and its average over a cycle is zero. Therefore average power $\begin{aligned} & { }_{P}=\frac{V_{m} i_{m}}{2} \cos \varphi \\ & \bar{P}=\frac{V_{m} i_{m}}{\sqrt{2} \sqrt{2}} \cos \varphi \\ & \bar{P}_{P}=V_{r m s} i_{r m s} \cos \varphi \end{aligned}$ (b) (i) When no power is dissipated even through a current is flowing in the circuit, the current is then called a wattles current. Alternatively The net power dissipation in a circuit containing an ideal inductor or a capacitor is zero. Therefore, the associated current is wattless current. (ii) Q factor of LCR circuit is defined as the ratio of its resonant angular frequency $\left(\omega_{0}\right)$ to the band width $(2 \Delta \omega)$ of the circuit. Alternatively Alternatively $\mathrm{Q}=\frac{\omega_{0}}{2 \Delta \omega}$ $\mathrm{Q}=\frac{\omega_{0} \mathrm{~L}}{\mathrm{R}}$ Alternatively Quantity factor is the ratio of rms voltage drop across inductor or the capacitor, in	1/2	

resonance condition, to the rms voltage applied to the circuit.

$$
\mathrm{Q}=\frac{\left(\mathrm{V}_{\mathrm{rms}}\right)_{\mathrm{L}}\left[/\left(\mathrm{V}_{\mathrm{rms}}\right)_{\mathrm{C}}\right]}{\left(\mathrm{V}_{\mathrm{rms}}\right)_{\mathrm{R}}}
$$

Alternatively
Quantity factor is measure of the sharpness of the resonance in LCR circuit.
Alternatively

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

OR
(a) Statement of Faraday's Laws

1
(b) Derivation of the expression for the emf induced across the ends of a
straight conductor
2
(c) Derivation of Magnetic energy stored

2
(a) (i) Whenever there is a change in magnetic flux linked with a coil, an emf is induced in the coil, however it lasts so long as magnetic flux keeps on changing.
(ii) The magnitude of the induced emf is equal to the rate of change of magnetic flux through the circuit

Alternatively

$$
\varepsilon=\frac{-d \phi}{d t}
$$

(b)

Straight conductor $P Q$ of length ' 1 ' is moving with velocity ' v ' in uniform magnetic field B, which is perpendicular to the plane of the system.

Length $R \mathrm{Q}=\mathrm{x}, \mathrm{RS}=\mathrm{PQ}=1$
Instantaneous flux $=($ normal $)$ field \times area
The magnetic flux $\left(\phi_{B}\right)$ enclosed by the loop PQRS,

$$
\therefore \phi_{\mathrm{B}}=\mathrm{Blx}
$$

Since ' x ' is changing with time, there is a change of magnetic flux. The rate of change of this magnetic flux determines the induced emf

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{gathered}
\therefore e=\frac{-d \phi}{d t}=\frac{-d}{d t}(B l x) \\
=-B l \frac{d x}{d t} \\
e=B l v \\
\text { as } \frac{d x}{d t}=-v
\end{gathered}
\] \\
(c) Work done (that gets stored as the magnetic potential energy) when current ' \(I\) ' flows in the solenoid.
\[
\begin{gathered}
d W=(e)(I \mathrm{dt}) \\
\therefore d W=\left(L \frac{d I}{d t}\right) \cdot(I d t) \\
\therefore d W=L I d I
\end{gathered}
\] \\
Total work done \(W=\int d W=\int L I d I\)
\[
W=\frac{1}{2} L I^{2}
\] \\
For the solenoid, we have \(L=\mu_{0} n^{2} A l\) and \(B=\mu_{0} n I\)
\[
\begin{gathered}
\therefore W=\frac{1}{2}\left(\mu_{0} n^{2} A l\right)\left[\frac{B}{\mu_{0} n}\right]^{2} \\
=\frac{B^{2} A l}{2 \mu_{0}}
\end{gathered}
\]
\end{tabular} \& 1/2 \& 5 \\
\hline 27. \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline (a) Answer and justification \& \(1 / 2+1 / 2\) \\
(b) Explanation of the formation of interference fringes and derivation of \\
expression of fringe width \& \(1+2\) \\
(c) Finding the intensity of light \& 1 \\
\hline
\end{tabular} \\
(a) No , \\
Because to obtain the steady interference pattern, the phase difference between the waves should remain constant with time, two independent monochromatic light sources cannot produce such light waves. \\
(b) \\
When light waves from two coherent sources, in Young's double slit experiment, superpose at a point on the screen, they produce constructive/ destructive interference, depending on the path difference between the two waves.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
1
1

1 \&

\hline
\end{tabular}

$$
I=4 I_{0} \cos ^{2} \phi / 2
$$

Phase difference (φ) when path difference is ' x '

$$
\begin{gathered}
\phi=\frac{2 \pi}{\lambda} \cdot x \\
\therefore \text { for } \mathrm{x}=\lambda, \text { we have } \\
\phi=2 \pi \\
\therefore \text { Intensity } I=4 I_{0} \cos ^{2} \pi=K \\
\therefore 4 I_{0}=K \\
\therefore I_{0}=K / 4
\end{gathered}
$$

Phase difference, when path difference is $\lambda / 4$, is

$$
\begin{aligned}
& \phi^{\prime}=\frac{2 \pi}{\lambda} \cdot \lambda / 4=\pi / 2 \\
& \therefore I^{\prime}=4 I_{0} \cos ^{2} \pi / 4 \\
& =2 \mathrm{I}_{0} \\
& =2 \frac{K}{4}=K / 2
\end{aligned}
$$

