Strictly Confidential: (For Internal and Restricted use only)

Senior School Certificate Examination Compartment July 2019 Marking Scheme PHYSICS (SUBJECT CODE 042) (PAPER CODE – 55/1/1)

General Instructions: -

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. **Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.**
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer 'X" be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 6. If a question does not have any parts, marks must be awarded in the left hand margin and encircled. This may also be followed strictly
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 / 25 answer books per day.
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transfer of marks from the answer book to online award list.
 - Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
 - Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

55/1/1 Page **1** of **26**

- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as (X) and awarded zero (0)Marks.
- 13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

55/1/1 Page **2** of **26**

MARKING SCHEME (COMPARTMENT) 2019

SET: 55/1/1

Q. NO.	VALUE POINTS/ EXPECTED ANSWERS	MARKS	TOTAL MARKS
	SECTION - A		
1.	Definition of angle of inclination: The angle which earth's magnetic field at a given place makes with the horizontal.	1	1
	Alternativaly		
	Alternatively Angle between $\overrightarrow{B_E}$ and \overrightarrow{H}		
	Alternatively Angle Θ , in the given figure represents the angle of inclination.		
	\overrightarrow{B}_{E}		
2.	Most energetic radiation: Gamma rays Frequency range: 10^{18} to 10^{23} Hz	1/2 1/2	1
	OR		
	(i) Ultra violet rays (ii) Frequency range: 10 ¹⁵ to10 ¹⁷ Hz	1/2 1/2	1
3.	Frequency of photon v=E/h $= \frac{2eV}{6.63 \times 10^{-34} Js}$ $= \frac{2 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} Hz$	1/2	
	= $4.8 \times 10^{14} Hz$ [Award the last ½ mark even if the student just makes a correct substitution but does not calculate the value of ν]	1/2	1
	OR		
	(i) Yes(ii) The photo electric current is dependent on the intensity of incident radiationBecause the change of intensity changes the number of photons incident per second on the photo sensitive surface.	1/ ₂ 1/ ₂	1
4.	Saturation property/ Short range nature of nuclear force	1	1
5.	Frequency range of the spectrum occupied by the signal. Alternatively Difference between the maximum and minimum frequencies considered essential for a given message signal	1	1

55/1/1

	$\frac{\text{Alternatively}}{\text{Band width}} = v_{\text{max}} - v_{\text{min}}$		
	SECTION- B		
6.	Expression for flux 1 Calculation of flux 1		
	Net outward flux through the cylinder		
	$\overrightarrow{E} \cdot \overrightarrow{\Delta S} = \overrightarrow{E} \cdot \overrightarrow{\Delta S_1} + \overrightarrow{E} \cdot \overrightarrow{\Delta S_2} + \overrightarrow{E} \cdot \overrightarrow{\Delta S_3}$	1/2	
	$= (100 + 100)\pi r^2 + 0$ (Here $\cos\theta = \cos 90^\circ = 0$ for ΔS_3)	1/2	
	$= [200 \times 3.14 \times (0.05)^2] Nm^2/C$	1/2	
	$=1.57 Nm^2/C$	1/2	2
	Alternatively:		
	5 cm 5 cm AS AS AS AS AS AS		
	Flux through right circular surface $\phi_{1=\stackrel{\rightarrow}{E}}$. $\stackrel{\rightarrow}{\Delta S}$ $= 100\Delta S$	1/2	
	Flux through left circular surface $\phi_{2=\overrightarrow{E}}$. $\overrightarrow{\Delta S}$ $= 100\Delta S$	1/2	
	Flux through the curved surface $\phi_{3=\overrightarrow{E}}$. $\overrightarrow{\Delta S}$ $= 0$	1/2	
	Net Flux $\phi = \phi_1 + \phi_2 + \phi_3$ = 200 ΔS = [200 × 3.14 × (0.05) ²] Nm^2C^{-1} = 1.57 Nm^2C^{-1}	1/2	2
7.	Formula for Induced Emf 1 Calculation of Induced Emf 1		
	$E = \frac{1}{-B\omega r^2}$	1	
	$E = \frac{1}{2}B\omega r^2$ $= \left[\frac{1}{2} \times 8 \times 10^{-5} \times 4\pi \times (0.5)^2\right] V$	1/2	

	in the second se	1	1
	$= 12.56 \times 10^{-5} V$	1/2	2
	OR		
	Formula for Induced Emf 1		
	Calculation of Induced Emf 1		
	$-d\phi$	1/2	
	$arepsilon = rac{-d\phi}{dt}$		
	$_{.}dB$	1/2	
	$= -A \frac{dB}{dt}$		
	$= -A\frac{dB}{dx} \times \frac{dx}{dt} = -Av\frac{dB}{dx}$	1/2	
	$= -A \frac{1}{dx} \times \frac{1}{dt} = -Av \frac{1}{dx}$		
	$= -[(0.1)^2 \times (-8 \times 10^{-3})]V$		
	$= 8 \times 10^{-5} V$	1/2	2
	-0710 /		
8.			
	(a) Graph of em wave		
	(b) (i) Relation between c, E_0 and B_0 $\frac{1}{2}$ (ii) Expression for speed of em wave $\frac{1}{2}$		
	(II) Expression for speed of elli wave //2		
	(a)		
	x ↑ E		
	MITTA MITTA		
	7111111 All (11111 All (11111 → z	1	
	N B		
	(b)		
	$(i) c = \frac{E_0}{B_0}$	1/2	_
	(ii) $c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$	1/2	2
	Λ ∈οικο		
9.			
	Expression for wavelength in terms of the quantum number of		
	the orbit 1		
	Ratio of wavelengths in the two orbits 1		
	$2\pi r_n = n \lambda_n$	1/2	
	$r_n = a_0 n^2$		
	$\therefore \lambda_n = 2\pi a_0 n$	1/2	
	$n = 2n\omega_0 n$		
		1	2
		1	<i>L</i>

			T
	$=\frac{\lambda_1}{\lambda_2} = \frac{1}{2}$		
	λ_{2}^{2}		
10			
10.	Cause of attenuation 1		
	Factors affecting the range 1		
	T detors directing the range		
	Cause: absorption of waves by earth	1	
	Factors: (i) Transmitted Power	1/2	
11	(ii) Frequency	1/2	2
11.			
	Diagram ½		
	Electric field due to point charges ½ Net electric field 1		
	Net electric field 1		
	E.,		
	P E at P		
		1/2	
	$q \rightarrow p \rightarrow q$		
	2a		
	$E_{+q} = \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + a^2)}$		
	$L_{+q} - \frac{1}{4\pi\epsilon_0} (r^2 + a^2)$		
	$1 \qquad a$		
	$E_{-q} = \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + a^2)}$	1/2	
		72	
	$E = E_{+q} cos\theta + E_{-q} cos\theta$		
	$=2E_{+q}cos\theta$		
		1/2	
	$=\frac{2qa}{4\pi\epsilon_0(r^2+a^2)^{3/2}}$	1/	2
	$4\pi\epsilon_0(r^2+a^2)^{3/2}$	1/2	2
	OR		
	Diagram ½ Expression for torque ½		
	Expression for P.E. ½		
	Minimum value of P.E. ½		
		1/	
1		1/2]

Torque $\tau = pEsin\theta$ $P.E. = W = \int_{\theta_0}^{\theta} pE sin\theta d\theta$ $= -pE (cos\theta - cos\theta_0)$ $= -pE cos\theta (for \theta_0 = \pi/2)$ $\therefore \text{ Minimum value of P.E.} = -p E$ [Note: Award the last ½ mark even if the student quotes zero (0) as the minimum value of P.E. which corresponds to the choice $\theta_0 = 0$ (or writes that this can		2
be precisely specified as it depends on the choice of θ_0)]		
(a) Effect + Reason $\frac{1}{2} + \frac{1}{2}$ (b) Effect + Reason $\frac{1}{2} + \frac{1}{2}$		
(a) $I = \frac{V}{\sqrt{R^2 + \omega^2 L^2}}$	1/2	
When ω increases, I decreases, \therefore brightness decreases	17	
(b) $I = \frac{V}{\sqrt{r^2 + \frac{1}{2}}}$	1/2	
$\sqrt{R^2 + \frac{1}{\omega^2 c^2}}$	1/2	
When ω increases, I increases, \therefore brightness increases		
Alternatively:	1/2	
(a) Brightness decreases	1/2	
Reason: The impedance of L increases with an increase in angular frequency (b) Brightness increases	1/2 1/2	
Reason: The impedance of C decreases with an increase in angular frequency		2
SECTION- C		
(a) Drift Velocity and its significance $\frac{1}{2} + \frac{1}{2}$	/2	
Relaxation time and its significance $\frac{1}{2} + \frac{1}{2}$		
(b) Change in drift velocity 1		
(a)		

Drift Velocity: It is the average velocity with which electrons move in a
conductor when an external electric field (or potential difference) is applied
across the conductor

1/2

Significance: The drift velocity controls the net current flowing across any cross section./ There is no net transport of charges across any area perpendicular to the applied field.

1/2

Relaxation time: It is the average time between successive collisions for the drifting electrons in the conductor.

1/2

Significance: It is a (very important) factor in determining the electrical conductivity of a conductor at different temperatures. (It is a factor which determines the drift velocity acquired by the electrons under a given applied external electric field)

1/2

(b)

$$v_d = \frac{eV}{mL} \tau$$

1/2

$$v_{d'} = \frac{eV}{m \times 5L} \tau$$

$$=\frac{v_d}{5}$$

1/2

3

OR

Diagram

1/2

Expression for equivalent emf and internal resistance

 $2\frac{1}{2}$

1/2

$$I = I_1 + I_2$$

$$= \left(\frac{E_1 - V}{r_1}\right) + \left(\frac{E_2 - V}{r_2}\right)$$

1/2

$$= \left(\frac{E_1}{r_1} + \frac{E_2}{r_2}\right) - V\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

1/2

Hence
$$V = \left[\frac{E_1 r_2 + E_2 r_1}{r_1 r_2}\right] - I\left(\frac{r_1 r_2}{r_1 + r_2}\right)$$

1/2

$$\therefore E_{eff} = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2}$$

1/2

	and $r_{eff} = \frac{r_1 r_2}{r_1 + r_2}$	1/2	3
14.	(a) Correct sequence of bands (b) Two characteristic properties 1/2 + 1/2		
	(a) Green, blue, orange, silver [Award ½ mark if two colours are correct in the sequence] (b) (i) High resistivity (ii) Low temperature coefficient of resistivity (c) (i) Uniformity of wire (ii) Balance point near the mid point of the wire (Also accept any other relevant precaution)	1 1/2 1/2 1/2 1/2 1/2	3
15.	(a) Reason for using shunt for conversion to ammeter 1 (b) Formula for shunt resistance 1 (c) Calculation of shunt resistance 1 (a) The ammeter is connected in series, in the relevant circuit branch. Hence its resistance must be (very) low so that the circuit current is not affected. A (very) low shunt resistance makes the effective resistance of galvanometer (very) low. (as required).	1	
	$S = \frac{I_g G}{I - I_g}$	1	
	$=\frac{6\times10^{-3}\times15}{[6-(6\times10^{-3})]}\;\Omega$	1/2	
	≈0.015Ω	1/2	3
16.	(a) Reason for circular motion 1 Expression for radius 1 (b) Path of the particle when $\Theta \neq 90^0$ 1 (a) $\vec{F} = q(\vec{v} \times \vec{B})$ Force \vec{F} on a moving charged particle in a magnetic field acts perpendicular to the velocity vector at all instants. It therefore, changes only the direction of velocity without changing its magnitude. This results in a circular motion of the particle for which the force \vec{F} provides the needed centripetal force $\left(=\frac{mv^2}{r}\right)$	1/2	
	Here F=qvB sin Θ = qvB (as $\Theta = \pi/2$)		

$\therefore \frac{mv^2}{r} = qvB$		
	1/2	
$\therefore r = \frac{mv}{qB}$ (b) If $\Theta \neq 90^{\circ}$, then velocity will have a component along \vec{R}	_	
particle will move along \vec{B} with this component of velocircular motion in a plane perpendicular to \vec{B} . Its motion is,	-	3
[Note: Award this 1 mark even if a student just writes th will describe a helical path / motion.]	at the charged particle	
OR		
Diagram 1 Working Principle 1 Two uses $\frac{1}{2} + \frac{1}{2}$		
Working Principle: Cyclotron uses crossed electric and magnifield makes the charged particle describe a circular pat frequency is so adjusted as to accelerate the particle whenever between the dees. A relatively small electric field can there particles to very high energy values.	th while electric field ver it crosses the space 1	
Uses: (i) To accelerate charged particles to very high energi (ii) To implant ions into solids to modify their propert [or any other use]	The state of the s	3
(a) Diagram of compound microscope Working of compound microscope (b) Consideration for choosing lenses for eye piece and o	$ \begin{array}{c} 1\\ 1\\ \text{bjective} \frac{1}{2} + \frac{1}{2} \end{array} $	

55/1/1 Page **10** of **26**

_				
		Working: When object is placed just beyond the focus of objective lens, the objective forms a real and highly magnified image of the object. This image is formed at the focus of the eye piece or at a point whose distance from the eye piece is less than the focal length of the eye piece. The eye piece then forms a (virtual) magnified image of the image formed by the objective. (b)Both the objective and the eye piece must have short focal lengths for high magnification.	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	3
	18.	Ray diagram 1 Derivation of lens formula 2 $\Delta A'B'P \sim \Delta ABP$	1	
		$\frac{A'B'}{AB} = \frac{B'P}{BP} \qquad(i)$	1/2	
		$\frac{A'B'}{MP} = \frac{B'F}{PF}$ or $\frac{A'B'}{AB} = \frac{B'F}{PF}$ From (i) and (ii) $\frac{B'P}{BP} = \frac{B'F}{PF}$	1/2	
ĺ				

	or $\frac{-v}{-u} = \frac{B'P + PF}{PF} = 1 + \frac{B'P}{PF}$		
	or $\frac{v}{u} = 1 - \frac{v}{f}$	1	3
	$\operatorname{or} \frac{1}{f} = \frac{1}{v} - \frac{1}{u}$		
	OR		
	Ray diagram 1 Derivation of mirror formula 2		
	A'		
	E F B P B'	1	
	$A'B'F \sim \Delta MPF$		
	$\frac{A'B'}{MP} = \frac{B'F}{PF} = \frac{B'P + PF}{PF}$		
	or $\frac{A'B'}{AB} = \frac{B'P + PF}{PF} \qquad(i)$	1/2	
	$\frac{A'B'}{AB} = \frac{B'C}{BC} = \frac{B'P+PC}{PC-PB} \qquad(ii)$	1/2	
	or $\frac{B'P+PF}{PF} = \frac{B'P+PC}{PC-PB}$		
	or $\frac{v-f}{-f} = \frac{v-2f}{-2f+u}$		
	Cross multiply and divide by uvf: $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	1	3
19.	(a) Explanation for formation of diffraction pattern 2		
	(b) Calculation of separation 1		

2. (a) Name and Principle of the device $\frac{1}{2} + \frac{1}{2}$ (b) Circuit diagram $\frac{1}{2}$ (c) I-V characteristics $\frac{1}{2}$ (2) Lener diode is used as a voltage regulator It works on the principle that after the breakdown voltage V_Z , a large change in the reverse current can be produced by an almost insignificant change in the reverse bias voltage Alternatively: The Zener Voltage remains constant, even when the current through the Zener diode varies over a wide range. (b) If the input voltage increases the current through R_S and Zener diode also increases. This increases the voltage drop across R_S without any change in the voltage across the Zener diode. If input voltage decreases, the current through R_S and Zener diode decreases. The voltage across R_S decreases without any change in voltage across the Zener diode. (c) I max Powward bias V_S I max V_S		5 <i>R</i>		
(a) Name and Principle of the device (b) Circuit diagram Working (c) I- V characteristics (c) I- V characteristics (d) I- V characteristics (e) I-		$=\frac{36}{36}$	1/2	3
(a) Zener diode is used as a voltage regulator It works on the principle that after the breakdown voltage Vz, a large change in the reverse current can be produced by an almost insignificant change in the reverse bias voltage Alternatively: The Zener Voltage remains constant, even when the current through the Zener diode varies over a wide range. (b) If the input voltage increases the current through R _S and Zener diode also increases. This increases the voltage drop across R _S without any change in the voltage across the Zener diode. If input voltage decreases, the current through R _S and Zener diode decreases. The voltage across R _S decreases without any change in voltage across the Zener diode. (c) Imaa) Forward bias	<u> </u>	(a) Name and Principle of the davice		
Zener diode is used as a voltage regulator It works on the principle that after the breakdown voltage V_Z , a large change in the reverse current can be produced by an almost insignificant change in the reverse bias voltage Alternatively: The Zener Voltage remains constant, even when the current through the Zener diode varies over a wide range. (b) If the input voltage increases the current through R_S and Zener diode also increases. This increases the voltage drop across R_S without any change in the voltage across the Zener diode. If input voltage decreases, the current through R_S and Zener diode decreases. The voltage across R_S decreases without any change in voltage across the Zener diode. (c) Imaa) Forward bias Forward bias		(b) Circuit diagram Working 1 1/2		
reverse bias voltage Alternatively: The Zener Voltage remains constant, even when the current through the Zener diode varies over a wide range. (b) If the input voltage increases the current through R _S and Zener diode also increases. This increases the voltage drop across R _S without any change in the voltage across the Zener diode. If input voltage decreases, the current through R _S and Zener diode decreases. The voltage across R _S decreases without any change in voltage across the Zener diode. (c) I (mA) Forward bias Forward bias	Zener diode is used It works on the prin	nciple that after the breakdown voltage Vz, a large change in	1/2	
If the input voltage increases the current through R_S and Zener diode also increases. This increases the voltage drop across R_S without any change in the voltage across the Zener diode. If input voltage decreases, the current through R_S and Zener diode decreases. The voltage across R_S decreases without any change in voltage across the Zener diode. (c) Regulated voltage R_S and Zener diode also increases. The voltage decreases, the current through R_S and Zener diode also increases. The voltage across R_S decreases without any change in voltage across the Zener diode.	reverse bias voltage Alternatively: The Z	Zener Voltage remains constant, even when the current	1/2	
If the input voltage increases the current through R_S and Zener diode also increases. This increases the voltage drop across R_S without any change in the voltage across the Zener diode. If input voltage decreases, the current through R_S and Zener diode decreases. The voltage across R_S decreases without any change in voltage across the Zener diode. (c) Regulated voltage also increases, the current through R_S and Zener diode also increases. The voltage across R_S decreases without any change in voltage across the Zener diode.	(b)			
increases. This increases the voltage drop across R_S without any change in the voltage across the Zener diode. If input voltage decreases, the current through R_S and Zener diode decreases. The voltage across R_S decreases without any change in voltage across the Zener diode. (c) $I_{(mA)}$ $I_{(mA)}$ $I_{(mA)}$ $I_{(mA)}$		$Voltage(V_L)$ I_L Regulated $Voltage$	1	
Reverse bias Forward bias V V V V V V V V	increases. This increases the Zand Zener diode de in voltage across the	reases the voltage drop across R_S without any change in the Zener diode. If input voltage decreases, the current through R_S ecreases. The voltage across R_S decreases without any change	1/2	
Reverse bias V_z $\longrightarrow V(V)$ $I(\mu A)$	(c)	<i>I</i> (mA) ↑		
		V_z Forward bias $V(V)$	1/2	3
	OR	• -		
(a) Truth tables of AND and NOT gates 1+½ (b) Obtaining OR gate from NAND gates 1½				

55/1/1 Page **15** of **26**

55/1/1 Page **16** of **26**

	$=> a_c = 12.5 V$	1/2	
	$a_m = 12.5 V$		
	Modulation index $\mu = \frac{a_m}{a_c}$	1/2	
	Modulation index $\mu = \frac{a_m}{a_c}$ $= \frac{7.5}{12.5} = 0.6$	1/2	3
	SECTION - D		
25.	 (a) Derivation of expression for the resultant capacitance in (i) parallel (ii) series 1 ½ + 1 ½ (b) Calculation of energy stored in the 12μf capacitor 		
	(a) (i) Parallel		
	C ₁		
	Q_1 C_2 Q_2 C_3 Q_3 Q_4 Q_5 Q_6	1/2	
	V $Q_1 = C_1V$, $Q_2 = C_2V$, $Q_3 = C_3V$,	1/2	
	But Q=Q ₁ +Q ₂ +Q ₃ ∴ Q= C ₁ V + C ₂ V + C ₃ V ∴ CV= C ₁ V + C ₂ V + C ₃ V $C = C_1 + C_2 + C_3$	1/2	
	(ii) Series	1/2	
	Potential difference across the plates of the three capacitors are:	72	
	$V_1 = \frac{Q}{C_1}$ $V_2 = \frac{Q}{C_2}$		

$V_3 = \frac{Q}{C_3}$ But $V = V_1 + V_2 + V_3$ $V = \frac{Q}{C_1} + \frac{Q}{C_2} + \frac{Q}{C_3}$

1/2

$$\therefore \frac{Q}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

1/2

$$\therefore \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

(b) Potential difference across the capacitor of 4µf capacitance

$$V = \frac{Q}{C} = \frac{16\mu C}{4\mu F}$$
$$= 4V$$

1/2

Potential across 12µf capacitor

1/2

Energy stored on this capacitor

$$U = \frac{1}{2}CV^2$$

1/2

$$=\frac{1}{2}(12 \times 10^{-6})8^2$$
 joule

=6 X 64
$$\times$$
 10⁻⁶ joule
=384 \times 10⁻⁶ J
=384 μ J

1/2

5

OR

- (a) Derivation of expression for the Electric field
 - (i) inside (ii) outside

1 + 2

- (b) Graphical variation of the Electric field
- 1

(c) Calculation of Electric flux

1

(a) (i) Inside

The point P is inside the spherical shell. The Gaussian surface is a sphere through P centered at 'O'

Flux through this surface= $E \times 4\pi r^2$

However there is no charge enclosed by this Gaussian surface. Hence using Gauss's Law

$$E \times 4\pi r^2 = 0$$
$$=> E=0$$

1/2

Outside

1/2

To calculate Electric Field \vec{E} at the outside point P, we take the Gaussian surface to be a sphere of radius 'r' and with center O, passing through P.

1/2

Electric Flux through the Gaussian surface
$$\varphi = E \times 4\pi r^2$$

1/2

Charge enclosed by this the Gaussian surface = $\sigma \times 4\pi R^2$

By Gauss's Law

$$E \times 4\pi r^2 = \frac{\sigma \times 4\pi R^2}{\epsilon_0} = \frac{q}{\epsilon_0}/\epsilon_0$$

Where q= total charge on the spherical shell.

$$\therefore E = \frac{q}{4\pi\epsilon_0 r^2}$$

$$\vec{E} = \frac{1}{4\pi\epsilon_{0}'} \frac{q}{r^{2}} \hat{r}$$

1/2

(b)

1

(c) Electric flux passing through the square sheet

$$\phi = \int \overrightarrow{E} \cdot \overrightarrow{ds}$$

 $\frac{1}{2}$

	=EA $\cos\Theta$ =200 × 0.01 × $\cos 60^{0}$ =1.0 Nm ² /C Note: The student may do the calculation by taking Θ =30 ⁰ and get $\sqrt{3}Nm^{2}/C$ as e answer. In that case award ½ mark only for part (c)]	1/2	5
26.	(a) Derivation of the expression for the average power 3 (b) Definition of terms (i) watt less current (ii) Quality factor 1 + 1		
(a)) Power at any instant 't' P=Vi		
	$= (V_m \sin wt)(i_m \sin(wt + \varphi))$	1/2	
	$=\frac{V_m i_m}{2} (2 \sin wt \sin(wt + \varphi))$	1/2	
	$= \frac{V_m i_m}{2} \left[\cos \varphi - \cos(2wt + \varphi) \right]$	1/2	
	the term $\cos(2wt + \varphi)$ is time dependent and its average over a cycle is zero. Therefore average power	1/2	
	$\bar{p}_{P} = \frac{V_{m}i_{m}}{2}cos\varphi$	1/2	
	$\bar{p} = rac{V_m i_m}{\sqrt{2}\sqrt{2}} cos arphi$		
	$_{P}^{-}=V_{rms}i_{rms}cosarphi$	1/2	
· ·	(i) When no power is dissipated even through a current is flowing in the requit, the current is then called a wattles current.		
Th	lternatively he net power dissipation in a circuit containing an ideal inductor or a capacitor is ero. Therefore, the associated current is wattless current.	1	
· ·	i) Q factor of LCR circuit is defined as the ratio of its resonant angular equency (ω_0) to the band width $(2\Delta\omega)$ of the circuit.		
<u>A</u>	ω_0		
A	$Q = \frac{\omega_0}{2\Delta\omega}$ $Q = \frac{\omega_0 L}{R}$		
	lternatively uantity factor is the ratio of rms voltage drop across inductor or the capacitor, in		

resonance condition, to the rms voltage applied to the circuit.

$$Q = \frac{(V_{rms})_L \left[/(V_{rms})_C\right]}{(V_{rms})_R}$$

Alternatively

Quantity factor is measure of the sharpness of the resonance in LCR circuit.

Alternatively

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

1 5

OR

- (a) Statement of Faraday's Laws
- (b) Derivation of the expression for the emf induced across the ends of a straight conductor 2
- (c) Derivation of Magnetic energy stored 2
- (a) (i) Whenever there is a change in magnetic flux linked with a coil, an emf is induced in the coil, however it lasts so long as magnetic flux keeps on changing.
 - (ii) The magnitude of the induced emf is equal to the rate of change of magnetic flux through the circuit

Alternatively

 $\varepsilon = \frac{-d\phi}{dt}$

1

(b)

1/2

1/2

Straight conductor PQ of length 'l' is moving with velocity 'v' in uniform magnetic field B, which is perpendicular to the plane of the system.

Length RQ=x, RS=PQ=l

Instantaneous flux= (normal) field \times area

The magnetic flux (ϕ_B) enclosed by the loop PQRS,

∴ ϕ_B =Blx

Since 'x' is changing with time, there is a change of magnetic flux. The rate of change of this magnetic flux determines the induced emf

		T	1
	$\therefore e = \frac{-d\phi}{dt} = \frac{-d}{dt}(Blx)$ $= -Bl\frac{dx}{dt}$ $e = Blv$ $as \frac{dx}{dt} = -v$	1/2	
	(c) Work done (that gets stored as the magnetic potential energy) when current 'I' flows in the solenoid. $dW = (e)(I dt)$ $\therefore dW = \left(L \frac{dI}{dt}\right) \cdot (I dt)$ $\therefore dW = LI dI$	1/2	
	Total work done $W = \int dW = \int LI dI$ $W = \frac{1}{2} L I^2$	1/2	
	For the solenoid, we have $L = \mu_0 n^2 A l$ and $B = \mu_0 n I$	1/2	
	$\therefore W = \frac{1}{2} (\mu_0 n^2 A l) \left[\frac{B}{\mu_0 n} \right]^2$ $= \frac{B^2 A l}{2\mu_0}$	1/2	5
27.	(a) Answer and justification (b) Explanation of the formation of interference fringes and derivation of expression of fringe width (c) Finding the intensity of light (a) No, Because to obtain the steady interference pattern, the phase difference between the waves should remain constant with time, two independent monochromatic light sources cannot produce such light waves. (b) When light waves from two coherent sources, in Young's double slit experiment, superpose at a point on the screen, they produce constructive/ destructive interference, depending on the path difference between the two waves.	1/2 1/2	
		1/2	

1/2

Path difference between the waves reaching at point P from two sources S_1 and S_2

$$S_2 P - S_1 P \approx \frac{xd}{D}$$

For constructive interference (i.e for nth bright fringe on the screen)

$$\frac{xd}{D} = n\lambda$$

 $\frac{xd}{D} = n\lambda$ where $n = 0, \pm 1, \pm 2, \dots$

1/2

$$\therefore x_n = \frac{n\lambda D}{d}$$

Similarly for (n+1)th bright fringe

$$x_{n+1} = \frac{(n+1)\lambda D}{d}$$

1/2

Fringe width $\beta = x_{n+1} - x_n$

$$=\frac{\lambda D}{d}$$

[Alternatively

Path difference for nth dark fringe on the screen

$$\frac{xd}{D} = (n + \frac{1}{2})\lambda$$

$$x_n = \frac{(n + \frac{1}{2})\lambda D}{d}$$

For (n+1)th dark fringe

$$x_{n+1} = \frac{(n + \frac{3}{2})\lambda D}{d}$$

Fringe width $\beta = x_{n+1} - x_n$

$$=\frac{\lambda D}{d}$$
]

1/2

(c) The intensity at a point on the screen where waves meet with a phase difference (ϕ) , is given by

$I = 4I_0 \cos^2 \frac{\phi}{2}$		
Phase difference (φ) when path difference is 'x' $\phi = \frac{2\pi}{\lambda} . x$ $\therefore \text{ for } x = \lambda \text{ , we have}$ $\phi = 2\pi$ $\therefore \text{ Intensity } I = 4I_0 \cos^2 \pi = K$		
$\therefore 4I_0 = K$		
$\therefore I_0 = \frac{K}{4}$ Phase difference, when path difference is $\lambda/4$, is		
$\phi' = \frac{2\pi}{\lambda} \cdot \lambda/_4 = \pi/2$	1/2	5
$\therefore I' = 4I_0 cos^2 \pi/4$		
$=2I_0$ $=2\frac{K}{4}=K/2$		
OR		
(a) Sketch of the refracted wave front (b) Verification of laws of refraction (c) Estimation of speed and wavelength 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Incident planewave Spherical wavefront of radius f	1	
(b)	1/2	
	1/2	

Incident wavefront		
Medium 1	1/2	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
v ₁	1/2	
Medium 2 A		
v_2 r $v_2\tau$ Refracted wavefront		
$v_2 > v_1$	1/2	
In right triangle ABC		
$\sin i = \frac{BC}{AC}$		
In $\triangle AEC$	1/2	
$\sin r = \frac{AE}{AC}$		
$\frac{\sin i}{\sin r} = \frac{BC}{AE} = \frac{v_1 \tau}{v_2 \tau} = \frac{v_1}{v_2} = \mu$	1/2	
(c) Speed of yellow light inside the glass slab		
$v = \frac{c}{\mu}$ $= \frac{3 \times 10^8}{1.5} m/s$	1/2	5
$\frac{3 \times 10^8}{10^8}$		
$=\frac{1.5}{1.5}m/s$		
$=2\times10^8m/s$		
Wavelength of yellow light inside the glass slab		
$\lambda' = \frac{\lambda}{\mu}$		
$=\frac{590}{1.5}nm$		
$=\frac{1.5}{1.5}nm$		
=393.33nm		