CLASS:

ALL CENTRE

SECTION - 1

1. Let f: R \rightarrow R be given by f(x) = (x - 1) (x - 2) (x - 5). Define F(x) = $\int_{0}^{2} f(t) dt$, x > 0. Then which of the

following options is/are correct? (a) F has a local minimum at x = 1(c) F(x) $\neq 0$ for all x $\in (0, 5)$

(b) F has a local maximum at x = 2

(d) F has two local maxima and one local minimum in $(0,\infty)$

Solution:

At x = 1 and x = 5, F'(x) changes from - to +

 \therefore F(x) has two local minima points at x = 1 and x = 5

F(x) has one local maxima point at x = 2.

2. For a
$$\in \mathbb{R}$$
, $|a| > 1$, let $\lim_{n \to \infty} \left(\frac{1 + \sqrt[3]{2} + \dots \sqrt[3]{n}}{n^{7/3} \left(\frac{1}{(an+1)^2} + \frac{1}{(an+2)^2} + \dots + \frac{1}{(an+n)^2} \right)} \right) = 54$. Then the possible value(s) of a is/are:
(a) 8 (b) - 9 (c) - 6 (d) 7

MATHS

CLASS:

JEE ADVANCED 2019 PAPER 2

ALL CENTRE

Solution:

$$\lim_{n \to \infty} \frac{\sqrt[3]{1} + \sqrt[3]{2} + \dots + \sqrt[3]{n}}{n^{7/3} \left[\frac{1}{(an+1)^2} + \frac{1}{(an+2)^2} + \dots + \frac{1}{(an+n)^2} \right]} = 54$$

$$\Rightarrow \lim_{n \to \infty} \frac{\frac{1}{n} \sum_{r=1}^n \left(\frac{r}{n}\right)^{\frac{1}{3}}}{\frac{1}{n} \left[\frac{n^2}{(an+1)^2} + \frac{n^2}{(an+2)^2} + \dots + \frac{n^2}{(an+n)^2} \right]} = 54$$

$$\Rightarrow \frac{\int_{0}^{1} x^{\frac{1}{3}} dx}{\int_{0}^{1} \frac{dx}{(a+x)^2}} = 54 \qquad \Rightarrow \frac{\left[\frac{3}{4} x^{\frac{4}{3}}\right]_{0}^{1}}{\left[\frac{-1}{a+x}\right]_{0}^{1}} = \frac{\frac{3}{4}}{\frac{1}{a} - \frac{1}{a+1}} = 54$$

$$\Rightarrow \frac{(a+1) - a}{a(a+1)} = \frac{3}{4} \times \frac{1}{54} \qquad \Rightarrow \frac{1}{a(a+1)} = \frac{1}{72} \qquad \Rightarrow a(a+1) = 72$$

$$\Rightarrow a = 8 \text{ or } a = -9$$

3. Three lines

$$L_1 : r = \lambda \hat{i}, \lambda \in R,$$

$$L_2 : \vec{r} = \vec{k} + \mu \hat{j}, \mu \in R \text{ and }$$

$$L_3 : \vec{r} = \hat{i} + \hat{j} + v \hat{k}, v \in R$$

are given. For which point(s) Q and L_2 can we find a point P on L_1 and a point R on L_3 so that P, Q and R are collinear?

(a)
$$\hat{k} + \hat{j}$$
 (b) \hat{k} (c) $\hat{k} + \frac{1}{2}\hat{j}$ (d) $\hat{k} - \frac{1}{2}\hat{j}$

P (
$$\lambda$$
, 0, 0), Q (0, μ , 1), R (1, 1, r)
Given $\overrightarrow{PQ} = k.\overrightarrow{PR} \Rightarrow \frac{\lambda}{\lambda - 1} = \frac{-\mu}{-1} = \frac{-1}{-r}$
 $\therefore \mu$ cannot take the values 0 and 1

CLASS:

JEE ADVANCED 2019 PAPER 2

ALL CENTRE

4. Let $F: R \rightarrow R$ be a function. We say that f has

PROPERTY 1 *if*
$$\lim_{h \to 0} \frac{f(h) - f(0)}{\sqrt{|h|}}$$
 exists and is finite and
PROPERTY 2 $f \lim_{h \to 0} \frac{f(h) - f(0)}{h^2}$ exists and is finite

(a) f(x) = x|x| has PROPERTY 2(b) $F(x) = x^{2/3}$ has PROPERTY 1(c) $f(x) = \sin x$ has PROPERTY 2(d) f(x) = |x| has PROPERTY 1

Solution:

(a) f (x) = x|x|

$$Lt \frac{f(h) - f(0)}{h^2} = Lim \frac{h | h | -0}{h^2}$$
 which does not exist.
(b) $Lim \frac{h^{\frac{2}{3}} - 0}{\sqrt{|h|}} = 0$
(c) $Lim \frac{\sinh - 0}{h^2}$ does not exist
(d) $Lim \frac{|h| - 0}{\sqrt{|h|}} = 0$

5. For non-negative integers n, let

$$f(n) = \frac{\sum_{k=0}^{n} \sin\left(\frac{k+1}{x+2}\pi\right) \sin\left(\frac{k+2}{n+2}\pi\right)}{\sum_{k=0}^{n} \sin^{2}\left(\frac{k+1}{n+2}\pi\right)}$$

Assuming cos⁻¹ x takes value in $[0, \pi]$, which of the following options is/are correct?

(a)
$$\sin (7 \cos^{-1} f(5)) = 0$$
 (b) $f(4) = \frac{\sqrt{3}}{2}$

(c)
$$\lim_{n \to \infty} f(n) = \frac{1}{2}$$
 (d) If $\alpha = \tan(\cos^{-1} f(6))$, then $\alpha^2 + 2\alpha - 1 = 0$

MATHS

JEE ADVANCED 2019 PAPER 2

ALL CENTRE

$$f(n) = \frac{\sum_{k=0}^{n} \sin\left(\frac{k+1}{n+2}\pi\right) \cdot \sin\left(\frac{k+2}{n+2}\pi\right)}{\sum_{k=0}^{n} 2\sin^{2}\left(\frac{k+1}{n+2}\pi\right)}$$

$$= \frac{\sum_{k=0}^{n} \cos\frac{\pi}{n+2} - \cos\left(\frac{2k+3}{n+2}\right)\pi}{\sum_{k=0}^{n} 2\sin^{2}\left(\frac{k+1}{n+2}\right)\pi}$$

$$= \frac{(n+1)\cos\frac{\pi}{n+2} - \frac{\cos\left(\frac{n+3}{n+2}\right)\pi \cdot \sin\left(\frac{n+1}{n+2}\right)\pi}{\sin\left(\frac{\pi}{n-2}\right)}}{(n+1) - \frac{\cos\pi \cdot \sin\left(\frac{n+1}{n+2}\right)\pi}{\sin\left(\frac{\pi}{n+2}\right)}}$$

$$= \frac{(n+1)\cos\left(\frac{\pi}{n+2}\right) + \cos\left(\frac{n+3}{n+2}\right)\pi}{(n+1) + 1}$$

$$= \cos\left(\frac{\pi}{n+2}\right)$$

$$(A)\alpha = Tan(\cos^{-1}f(6)) = Tan\cos^{-1}\left(\cos\frac{\pi}{8}\right) = Tan\frac{\pi}{8}$$

$$\alpha^{2} + 2\alpha - 1 = Tan^{2}\frac{\pi}{8} + 2Tan\frac{\pi}{8} - 1$$

$$Tan2\left(\frac{\pi}{8}\right) = \frac{2Tan\frac{\pi}{8}}{1 - Tan^{2}\frac{\pi}{8}}$$

$$\Rightarrow 1 = \frac{2\alpha}{1 - \alpha^{2}} \Rightarrow \alpha^{2} + 2\alpha - 1 = 0$$

 \therefore option (A) is correct.

(B)
$$\lim_{n \to \infty} f(\mathbf{x}) = \lim_{n \to \infty} \cos\left(\frac{\pi}{n+2}\right) = \lim_{n \to 0} \cos\left(\frac{\pi}{n+2/n}\right) = 1$$

Option (B) correct.

MATHS

JEE ADVANCED 2019 PAPER 2

CLASS:

ALL CENTRE

$$(C) f(4) = \cos\left(\frac{\pi}{4+2}\right) = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$$
Option (C) wrong

$$(D) \sin\left[7\cos^{-1}f(5)\right] = \sin\left[7\cos^{-1}\left(\cos\frac{\pi}{7}\right)\right] = \sin\left[7\times\frac{\pi}{7}\right] = 0$$
6. Let $P_1 = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, P_3 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_4 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, P_5 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, P_6 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ and $X = \sum_{k=1}^{6} P_k \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix} P_k^T$
Where P_k^T denotes the transpose of the matrix P_k . Then which of the following options is/are correct

Where P_{K}^{T} denotes the transpose of the matrix P_{K} . Then which of the following options is/are correct? (a) X – 30I is an invertible matrix (b) The sum of diagonal entries of X is 18 (c) If $X\begin{bmatrix}1\\1\\1\end{bmatrix} = \alpha \begin{bmatrix}1\\1\\1\end{bmatrix}$, then $\alpha = 30$ (d) X is a symmetric matrix

Solution:

From the given data it is clear that

$$P_{1} = P_{1}^{T} = P_{1}^{-1}$$

$$P_{2} = P_{2}^{T} = P_{2}^{-1}$$

$$P_{6} = P_{6}^{T} = P_{6}^{-1}$$
And Let $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix}$

Here $A^{T} = A \rightarrow A$ is symmetric matrix

$$X^{T} = \left(P_{1}AP_{1}^{T} + \dots + P_{6}AP_{6}^{T}\right)^{T}$$

MATHS

CLASS:

JEE ADVANCED 2019 PAPER 2

ALL CENTRE

$$= P_1 A^T P_1^T + \dots + P_6 A^T P_6^T$$
$$= X$$

:. X is symmetric

 $Let B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $XB = P_{1}AP_{1}^{T}G + P_{2}AP_{2}^{T}B + \dots + P_{6}AP_{6}^{T}B$ $= P_{1}AB + P_{2}AB + \dots + P_{6}AB$ $= (P_{1} + P_{2} + P_{3} + \dots + P_{6})\begin{bmatrix} 6 \\ 3 \\ 6 \end{bmatrix}$ $= \begin{bmatrix} 30 \\ 30 \\ 30 \end{bmatrix} = 30B \implies \infty = 30$

Since $X\begin{bmatrix}1\\1\\1\end{bmatrix} = 30\begin{bmatrix}1\\1\\1\end{bmatrix}$

 $\Rightarrow (X - 30I) B = 0 \text{ has a nontrivial solution } B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

 $\Rightarrow (X - 30I) = 0$ $X = P_1 A P_1^T + \dots + P_6 A P_6^T$

CLASS:

MATHS

JEE ADVANCED 2019 PAPER 2

ALL CENTRE

$$\operatorname{Trace}(X) = tr(P_1AP_1^T) + \dots + Tr(P_6AP_6^T)$$

$$= (2 + 0 + 1) + \dots + (2 + 0 + 1) = 3 + 3 + \dots (6 \text{ times}) = 18$$

7. Let
$$\mathbf{x} \in \mathbf{R}$$
 and let $P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}, Q = \begin{bmatrix} 2 & x & x \\ 0 & 4 & 0 \\ x & x & 6 \end{bmatrix}$ and $R = PQP^{-1}$

Then which of the following options is/are correct?

(a) For x = 1, there exists a unit vector
$$\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$$
 for which R $\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

(b) There exists a real number x such that PQ = QP

(c) det R = det
$$\begin{bmatrix} 2 & x & x \\ 0 & 4 & 0 \\ x & x & 5 \end{bmatrix} + 8$$
, for all $x \in R$
(d) for x = 0, if $R \begin{bmatrix} 1 \\ a \\ b \end{bmatrix} = 6 \begin{bmatrix} 1 \\ a \\ b \end{bmatrix}$, then $a + b = 5$

$$R = PQP^{-1}$$

$$|R| = |P||Q| \cdot |P^{-1}|$$

$$\Rightarrow \det Q = 2(24) - x(0) + x(-4x) = 48 - 4x^{2}$$

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix} \cdot Q(X = 0) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

$$R = PQR^{-1}$$

CLASS:

MATHS

JEE ADVANCED 2019 PAPER 2

ALL CENTRE

$$= \begin{bmatrix} 2 & 4 & 6 \\ 0 & 8 & 12 \\ 0 & 0 & 18 \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} 6 & -3 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 2 \end{bmatrix}$$
$$= \frac{1}{6} \begin{bmatrix} 12 & 6 & 4 \\ 0 & 24 & 8 \\ 0 & 0 & 36 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2/3 \\ 0 & 4 & 4/3 \\ 0 & 0 & 6 \end{bmatrix}$$
$$(R-6I) \begin{pmatrix} 1 \\ a \\ b \end{pmatrix} = \begin{pmatrix} -4 & 1 & 2/3 \\ 0 & -2 & 4/3 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ a \\ b \end{pmatrix} = \begin{bmatrix} -4 & +a & +\frac{2b}{3} \\ 0 & -2a & +4b/3 \\ 0 & 0 & 0 \end{bmatrix}$$
$$-4 + a + \frac{2b}{3} = 0 \text{ and } -2a + \frac{4b}{3} = 0 \Rightarrow a = 2 \& b = 3$$
$$\therefore \qquad a+b=5$$
$$PQ = QP \Rightarrow x+4+x = 2+2x+0 \Rightarrow \text{ No value exist}$$

8. Let
$$f(x) = \frac{\sin \pi x}{x^2}, x > 0$$

Let $x_1 < x_2 < x_3 < \dots < x_n < \dots$ be all the points of local maximum of f and $y_1 < y_2 < y_3 < \dots < y_n < \dots$ be all the points of local minimum of f. Then which of the following options is/are correct? (a) $|x_n - y_n| > 1$ for every n (b) $x_1 < y_1$ (c) $x_n \in \left(2n, 2n + \frac{1}{2}\right)$ for every n (d) $x_{n+1} - x_n > 2$ for every n

Solution:

$$f(\mathbf{x}) = \frac{\sin \pi x}{x^2} \implies f'(\mathbf{x}) = \frac{x^2 \cdot (\cos \pi \mathbf{x}) \cdot (\pi) - \sin \pi \mathbf{x} \cdot (2 \mathbf{x})}{x^4}$$
$$\implies f'(\mathbf{x}) = \frac{2x \cos \pi x \left(\frac{\pi x}{2} - \tan \pi x\right)}{x^4}$$

By using graph we can say that option (1) (3) (4) are correct.

JEE ADVANCED 2019 PAPER 2

ALL CENTRE

<u>SECTION -2</u>

1. The value of
$$\sec^{-1}\left(\frac{1}{4}\sum_{k=0}^{10}\sec\left(\frac{7\pi}{12}+\frac{k\pi}{2}\right)\sec\left(\frac{7\pi}{12}+\frac{(k+1)\pi}{2}\right)\right)$$
 in the interval $\left[-\frac{\pi}{4},\frac{3\pi}{4}\right]$ equals

Solution:

$$\sec^{-1} \pi \left(\frac{1}{4} \sum_{k=0}^{10} \sec\left(\frac{7\pi}{12} + \frac{k\pi}{2}\right) \sec\left(\frac{7\pi}{12} + \frac{(k+1)\pi}{2}\right) \right)$$
$$= \sec^{-1} \left(\frac{-1}{4} \sum_{k=0}^{10} \sec\left(\frac{7\pi}{12} + \frac{k\pi}{2}\right) \cos \sec\left(\frac{7\pi}{12} + \frac{k\pi}{2}\right) \right)$$
$$= \sec^{-1} \left(\frac{-1}{4} \sum_{k=0}^{10} \frac{2}{\sin\left(\frac{7\pi}{6} + k\pi\right)} \right)$$
$$= \sec^{-1} \left(\frac{-1}{2} \sum_{k=0}^{10} \frac{1}{(-1)^{k+1}} \sin \frac{\pi}{6} \right)$$
$$= \sec^{-1} \left(-\sum_{k=0}^{10} \frac{1}{(-1)^{k+1}} \right) = \sec^{-1}(1) = 0$$

2. Let |X| denote the number of elements in set X. Let $S = \{1,2,3,4,5,6\}$ be a sample space, where each element is equally likely to occur. If A and B are independent events associated with S, then the number of ordered pairs (A,B) such that $1 \le |B| < |A|$, equals.

Solution:

The number of ordered pairs of (A, B) are

 $6c_1 (6c_2 + 6c_3 + \ldots + 6c_6) + 6c_2 (6c_2(6c_3 + 6c_4 \ldots + 6c_6) + 6c_3(6c_4 + 6c_5 + 6c_6) + 6c_4(6c_5 + 6c_6) + 6c_5 \ldots 6c_6) + 6c_5 \ldots 6c_6 + 6c_6$

$$= (6c_1. 6c_2 + 6c_1. 6c_3 + \dots + 6c_16c_6) + (6c_2.6c_3 + 6c_2.6c_4 + \dots + 6c_2.6c_6) + (6c_3.6c_4 + 6c_3.6c_5 + 6c_3.6c_6)$$

MATHS

B BYJU'S

CLASS:

JEE ADVANCED 2019

ALL CENTRE

PAPER 2

 $+ 6c_{4}.6c_{5} + 6c_{4}.6c_{6} + 6c_{5}.6c_{6}.$

 $= (12c_5 - 6c_1) + (12c_4 - 6c_2) + (12c_3 - 6c_3) + (12c_2 - 6c_4) + (12c_1 - 6c_5)$

$$= (12c_1 + 12c_2 + 12c_3 + 12c_4 + 12c_5) - (6c_1 + 6c_2 + \ldots + 6c_5)$$

= 1585 - 62 = 1523.

3. Five person A, B, C, D and E are seated in a circular arrangement. If each of them is given a hat of one of the three colours red, blue and green, then the number of ways of distributing the hats such that the persons seated in adjacent seats get different coloured hats is

Solution:

Maximum number of hats used of same colour are 2.

They cannot be 3 otherwise atleast 2 hats of same colour are consecutive.

Now the hats used are consider as B B G G B

Which can be selected in 3 ways.

It can be R G G B B or R R G B B

The number of ways of distributing blue hat (single one) in 5 persons equal to 5

Now either position B and D are filled by green hats and C and E are filled by Red hats or B & D are filled by

Red hats and C & E are filled by Green hats.

 \rightarrow 2 ways are possible.

Hence number of ways = $3 \times 5 \times 2 = 30$ ways.

4. Suppose

$$\det \begin{bmatrix} \sum_{k=0}^{n} k & \sum_{k=0}^{n} {}^{n}C_{k}k^{2} \\ \sum_{k=0}^{n} {}^{n}C_{k}k & \sum_{k=0}^{n} {}^{n}C_{k}3^{k} \end{bmatrix} = 0$$
, holds for some positive integer n. Then $\sum_{k=0}^{n} {}^{n}C_{k} + 1$ equals

MATHS

CLASS:

JEE ADVANCED 2019 PAPER 2

0

ALL CENTRE

Solution:

$$\begin{vmatrix} \sum_{k=0}^{n} k & \sum_{k=0}^{n} {}^{n}C_{k} \cdot k^{2} \\ \sum_{k=0}^{n} {}^{n}C_{k} \cdot k & \sum_{k=0}^{n} {}^{n}C_{k} \cdot 3^{k} \end{vmatrix} = 0$$

$$\begin{vmatrix} \frac{n(n+1)}{2} & n \cdot 2^{n-1} + n(n-1) \cdot 2^{n-2} \\ n \cdot 2^{n-1} & 4^{n} \end{vmatrix} = 0$$

$$\Rightarrow \frac{n(n+1)}{2} \cdot 4^{n} - n \cdot 2^{2n-1} \left(n \cdot 2^{n-1} + n(n-1) \cdot 2^{n-2} \right) = 0$$

$$\Rightarrow \frac{n(n+1)}{2} \cdot 4^{n} - n^{2} \cdot 2^{2n-2} \cdot -n^{2} (n-1) \cdot 2^{2n-3} \cdot = 0$$

$$\Rightarrow \frac{n(n+1)}{2} - \frac{n^{2}}{4} - \frac{n^{2}(n-1)}{8} = 0 \Rightarrow \frac{n}{2} \left[n + 1 - \frac{n}{2} - \frac{n(n-1)}{4} \right] =$$

$$\Rightarrow n = 0 \text{ or } 4(n+1) - 2n - 1(n-1) = 0 \Rightarrow n = 0 \text{ or } n = 4$$

$$\sum_{\pi=0}^{4} \frac{4c\pi}{r+1} = \sum_{r=0}^{4} \frac{5cr+1}{5} = \frac{2^{5}-1}{5} = \frac{31}{5} = 6.20$$

5. The value of the integral
$$\int_{0}^{\pi/2} \frac{3\sqrt{\cos\theta}}{\left(\sqrt{\cos\theta} + \sqrt{\sin\theta}\right)^5} d\theta$$
 equals

$$I = \int_{0}^{\pi/2} \frac{3\sqrt{\cos\theta}}{\left(\sqrt{\sin\theta} + \sqrt{\cos\theta}\right)^{5}} \cdot d\theta$$
$$I = 3\int_{0}^{\pi/2} \frac{\sqrt{\cos\theta}}{\left(\sqrt{\sin\theta} + \sqrt{\cos\theta}\right)^{5}} \longrightarrow 1$$

CLASS:

JEE ADVANCED 2019 PAPER 2

ALL CENTRE

$$I = 3 \int_{0}^{\pi/2} \frac{\sqrt{\sin \theta}}{\left(\sqrt{\cos \theta} + \sqrt{\sin \theta}\right)^5} \longrightarrow 2 \qquad \left[\because \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a-x) \cdot dx \right]$$

$$2I = 3\int_{0}^{\pi/2} \frac{\sqrt{\cos\theta}\sqrt{\sin\theta}}{\left(\sqrt{\cos\theta} + \sqrt{\sin\theta}\right)^{5}} \cdot d\theta = 3\int_{0}^{\pi/2} \frac{d\theta}{\left(\sqrt{\cos\theta} + \sqrt{\sin\theta}\right)^{4}}$$

$$\frac{2I}{3} = \int_{0}^{\frac{\pi}{2}} \frac{\sec 2\theta \cdot d\theta}{\left(\sqrt{\tan \theta} + 1\right)^{4}}$$

Let $Tan\theta = t^2 \implies \sec 2\theta \cdot d\theta = 2t \, dt$

$$\frac{2I}{3} = \int_{0}^{\infty} \frac{2tdt}{(t+1)^{4}}$$
$$\frac{I}{3} = \int_{0}^{\infty} \left[\frac{1}{(t+1)^{3}} - \frac{1}{(t+1)^{4}} \right] dt$$
$$I = \left[\frac{-3}{2(t+1)^{2}} + \frac{1}{(t+1)^{3}} \right]_{0}^{\infty}$$

$$=\frac{3}{2}-1=\frac{1}{2}$$

6. Let $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ be two vectors. Consider a vector $\vec{c} = \alpha \vec{a} + \beta \vec{b} + \alpha, \beta \varepsilon \square$. If the projection of \vec{c} on the vector $(\vec{a} + \vec{b})is 3\sqrt{2}$, then the minimum value of $(\vec{c} - (\vec{a} \times \vec{b})).\vec{c}$ equals

Solution:

 $\vec{a} = 2i + j - k$ $\vec{b} = i + 2j + k$

CLASS:

JEE ADVANCED 2019

ALL CENTRE

PAPER 2

$$\vec{c} = \alpha \vec{a} + \beta \vec{b} = \alpha (2i + j - k) + \beta (i + 2j + k)$$

$$= (2\alpha + \beta)i + (\alpha + 2\beta)j + (\beta - \alpha)k$$

$$Given \quad \frac{\vec{c} \cdot (a + b)}{|\vec{a} + \vec{b}|} = 3\sqrt{2}$$

$$\Rightarrow 9(\alpha + \beta) = 18 \quad \Rightarrow \alpha + \beta = 2$$

$$(\vec{c} - a \times b)c = (\alpha \vec{a} + \beta \vec{b} + \vec{a} \times \vec{b}) \cdot (\alpha \vec{a} + \vec{b}\beta)$$

$$= 6\alpha^{2} + 6\alpha\beta + 6\beta^{2} = 6[\alpha^{2} + \alpha(2 - \alpha) + (2 - \alpha)]$$

$$= 6(\alpha^{2} - 2\alpha + 4)$$

Minimum value = 18

SECTION - 3

1. Answer the following by appropriately matching the lists based on the information given in the paragraph Let $f(x) = sin(\pi cosx)$ and $g(x) = cos(2\pi sinx)$ be two functions defined for x > 0. Define the following sets whose element are written in the increasing order:

$$X = \{x: f(x) = 0\}, \quad Y = \{x: f'(x) = 0\}$$
$$Z = \{x: g(x) = 0\}, \quad W = \{x: g'(x) = 0\}$$

List –I contains the sets X,Y,Z and W. List – II contains some information regarding these sets. List I List – II

(I) X
(I) Y
(P)
$$\supseteq \left\{ \frac{\pi}{2}, \frac{3\pi}{2}, 4\pi, 7\pi \right\}$$

(Q) an arithmetic progression

- (III) Z (R) Not an arithmetic progression
- (IV) W (S) $\supseteq \left\{ \frac{\pi}{6}, \frac{7\pi}{6}, \frac{13\pi}{6} \right\}$ (T) $\supseteq \left\{ \frac{\pi}{3}, \frac{2\pi}{3}, \pi \right\}$ 13

CLASS:

MATHS

JEE ADVANCED 2019 PAPER 2

ALL CENTRE

$$(\mathbf{U}) \supseteq \left\{ \frac{\pi}{6}, \frac{3\pi}{4} \right\}$$

Which of the following is the or	nly correct combination?		
(a) (II), (R), (S)	(b) (I), (P), (R)	(c) (II), (Q), (T)	(d) (I), (Q), (U)

2. Answer the following by appropriately matching the lists based on the information given in the paragraph Let $f(x) = \sin(\pi \cos x)$ and $g(x) = \cos(2\pi \sin x)$ be two functions defined for x > 0. Define the following sets whose element are written in the increasing order:

$$X = \{x : f(x) = 0\}, \quad Y = \{x : f'(x) = 0\}$$
$$Z = \{x : g(x) = 0\}, \quad W = \{x : g'(x) = 0\}$$

List -I contains the sets X,Y,Z and W. List - II contains some information regarding these sets. List I List – II

(I) X (P)
$$\supseteq \left\{ \frac{\pi}{2}, \frac{3\pi}{2}, 4\pi, 7\pi \right\}$$

(Q) an arithmetic progression (II) Y (III) Z

(R) Not an arithmetic progression

(IV) W

$$(S) \supseteq \left\{ \frac{\pi}{6}, \frac{7\pi}{6}, \frac{13\pi}{6} \right\}$$
$$(T) \supseteq \left\{ \frac{\pi}{3}, \frac{2\pi}{3}, \pi \right\}$$
$$(U) \supseteq \left\{ \frac{\pi}{6}, \frac{3\pi}{4} \right\}$$

Which of the following is the only correct combination?

(a)
$$(IV)$$
, (Q) , (T) (b) (IV) , (P) , (R) , (S) (c) (III) , (R) , (U)

(d) (III), (P), (Q), (U)

Solution:

$$f(\mathbf{x}) = 0 \Longrightarrow \sin(\pi \cos x) = 0$$

 $\Rightarrow \pi \cos x = n\pi \Rightarrow \cos x = n \Rightarrow \cos x = -1, 0, 1$

$$x = \left\{ n \pi, (2 n \pi) \frac{\pi}{2} \right\}$$
$$x = \left\{ \frac{n\pi}{2}, n \in \mathbf{I} \right\}$$

CLASS:

JEE ADVANCED 2019 PAPER 2

ALL CENTRE

$$f'(\mathbf{x}) = 0 \Rightarrow \cos(\pi \cos \mathbf{x})(-\pi \sin \mathbf{x}) = 0$$

$$\Rightarrow \pi \cos x = (2n+1)\frac{\pi}{2}or x = n\pi$$

$$\Rightarrow \cos x = n + \frac{1}{2}or x = n\pi$$

$$\Rightarrow \cos x = \pm \frac{1}{2}or x = n\pi$$

$$\therefore y = \left\{2n\pi \pm \frac{\pi}{3}, 2n\pi \pm \frac{2\pi}{3}, n\pi\right\}$$

$$g(\mathbf{x}) = 0 \Rightarrow \cos(2\pi \sin \mathbf{x}) = 0$$

$$\Rightarrow 2\pi \sin x = (2n+1)\frac{\pi}{2}$$

$$\Rightarrow \sin x = \frac{2n+1}{4} = \pm \frac{1}{4}, \pm \frac{3}{4}$$

$$z = \left\{n\pi \pm \sin^{-1}\frac{1}{4}, n\pi \pm \sin^{-1}\frac{3}{4}, n \in I\right\}$$

$$g'(\mathbf{x}) = 0 \Rightarrow -\sin(2\pi \sin \mathbf{x})(2\pi \cos \mathbf{x}) = 0$$

$$\Rightarrow 2\pi \sin x = n\pi \text{ or } x = (2n+1)\frac{\pi}{2}$$

$$\Rightarrow \sin x = \frac{n}{2} = 0, \pm \frac{1}{2}, \pm 1 \text{ or } x = (2n+1)\frac{\pi}{2}$$

$$\Rightarrow \sin x = \frac{n}{2} = 0, \pm \frac{1}{2}, \pm 1 \text{ or } x = (2n+1)\frac{\pi}{2}$$

$$\Rightarrow W = \left\{n\pi, (2n+1)\frac{\pi}{2}, n\pi \pm \frac{\pi}{6}, n \in I\right\}$$

(1) Option - 3 (2) Option - 2

3. Answer the following by appropriately matching the lists based on the information given in the paragraph

DATE:		MATHS	B BYJU'S
CLASS:	JEE	ADVANCED 2019 PAPER 2	
ALL CENTRE			
Let the circl	les $C_1 : x^2 + y^2 = 9$ and $C_2 : (x_1)$	$(x-3)^2 + (y-4)^2 = 16$, inters	sect at the points X and Y. Suppose that
another circ	le C ₃ : $(x - h)^2 + (y - k)^2 = r^2$	satisfies the following cond c_{1}	litions:
(i) centre of (ii) C_1 and (C_3 is connear with the central C_2 both lie inside C_3 , and	es of C_1 and C_2	
(iii) C ₃ touc	hes C_1 at M and C_2 at N		
Let the line	through X and Y intersect C_3	at Z and W, and let a comm	non tangent of C_1 and C_3 be a tangent to the
There are so	- ouy. ome expression given in the L	ist – I whose values are giv	en in List – II below:
Lis	t-I	List – II	
(I) $2h + k$	of ZW	(P) 6	
(II) $\frac{Length}{Length}$	hof XY	(Q) √6	
(III) $\frac{Area}{Area}$	of triangle MZN	(R) $\frac{5}{4}$	
		21	
(IV) α		(S) $\frac{21}{5}$	
		(T) 2√6	
		10	
		$(0)\frac{1}{3}$	
Which of th (a) (IV) (S)	e following is the only INCO	RRECT combination?	
(a) (1 v), (5)	(0) (1), (0)	(c) (III), (K)	(u) (i), (i)
Solution:			
(ii)	Equation of line zw		
C ₁ =	$= C_2$		

٦

 \Rightarrow 3x + 4y = 9

 \Rightarrow Distance of zw from (0,0)

$$\left|\frac{-9}{\sqrt{3^2+4^2}}\right| = \frac{9}{5}$$

MATHS

CLASS:

JEE ADVANCED 2019 PAPER 2

ALL CENTRE

Length of xy =
$$2\sqrt{9 - (\frac{9}{5})^2} = \frac{24}{5}$$

Distance of zw from c

$$\frac{\left|\frac{3\times9}{5}+4\times\frac{12}{5}-9\right|}{\sqrt{3^2+4^2}} = \frac{6}{5}$$

Length of $zw = 2\sqrt{6^2 - \frac{6^2}{5^2}} = \frac{24\sqrt{6}}{5}$
$$\frac{length of zw}{length of xy} = \sqrt{6}$$

(iii) Area of
$$\Delta mzN = \frac{1}{2} \cdot Nm \cdot \left(\frac{1}{2}zw\right) = \frac{72\sqrt{6}}{5}$$

Area of
$$\Delta zmw = \frac{1}{2} \cdot zw \cdot (om + op) = \frac{1}{2} \cdot \frac{24\sqrt{6}}{5} \cdot \left(3 + \frac{9}{5}\right) = \frac{288\sqrt{6}}{25}$$

 $\therefore \frac{\text{Area of } \Delta mzN}{\text{Area of } \Delta zmw} = \frac{5}{4}$

(iv) Slope of tangent to
$$C_1$$
 at $m = \frac{-1}{\frac{4}{3}} = -\frac{3}{4}$

Equation of Tangent $y = mx - 2\sqrt{1 + m^2}$

$$y = \frac{-3x}{4} - 3\sqrt{1 + \frac{9}{16}}$$
$$y = \frac{-3x}{4} - \frac{15}{4}$$

MATHS

CLASS:

JEE ADVANCED 2019 PAPER 2

 $\rightarrow 2$

ALL CENTRE

$$\Rightarrow x = \frac{-4y}{3} - 5 \qquad \rightarrow 1$$

Tangent to
$$x^2 = 4(2d)y$$
 is $x = m'y + \frac{2d}{m'}$

Compare 1 and 2

$$m' = \frac{-4}{3}$$
 and $\frac{2 \propto}{m^1} = -5 \qquad \Rightarrow \propto = \frac{10}{3}$

- 4. Answer the following by appropriately matching the lists based on the information given in the paragraph Let the circles $C_1: x^2 + y^2 = 9$ and $C_2: (x - 3)^2 + (y - 4)^2 = 16$, intersect at the points X and Y. Suppose that another circle C_3 : $(x - h)^2 + (y - k)^2 = r^2$ satisfies the following conditions: (i) centre of C_3 is collinear with the centres of C_1 and C_2

 - (ii) C_1 and C_2 both lie inside C_3 , and
 - (iii) C₃ touches C₁ at M and C₂ at N

Let the line through X and Y intersect C_3 at Z and W, and let a common tangent of C_1 and C_3 be a tangent to the parabola $x_2 = 8\alpha y$.

There are some expression given in the List – I whose values are given in List – II below:

List – I	List – II	
(I) 2h + k	(P) 6	
(II) $\frac{Length of ZW}{Length of XY}$	(Q) √6	
$(\text{III}) \frac{Area of triangle MZN}{Area of triangle ZMW}$	(R) $\frac{5}{4}$	
(IV) α	(S) $\frac{21}{5}$	
	(T) $2\sqrt{6}$	
	(U) $\frac{10}{3}$	
Which of the following is the only INCO	ORRECT combination?	

which of the following	is the only INCORRECT	combination?	
(a) (II), (T)	(b) (I), (S)	(c) (I), (U)	(d) (II), (Q)

DATE:	MATHS	BYJU'S
CLASS:	JEE ADVANCED 2019	The Learning App
ALL CENTRE	PAPER 2	
$2r = MN = 3 + \sqrt{3^2 + 4^2} + 4 = 12$		
$\Rightarrow r = 6$		
Centre c of circle c_3 lies on y	$=\frac{4}{3}x$	
Let $c\left(h,\frac{4}{3}h\right)$		w N
$OC = MC - OM = \frac{12}{2} - 3 =$	3	
$\sqrt{h^2 + \frac{16}{9}h^2} = 3 \Longrightarrow h = \frac{9}{5}$		M
$k = \frac{4}{3}h = \frac{12}{5} \implies 2h + k = 6$		