

Date: 6th September 2020

Time: 09:00 am - 12:00 pm

Subject: Chemistry

1. The INCORRECT statement is :

- (1) Cast iron is used to manufacture wrought iron.
- (2) Brass is an alloy of copper and nickel.
- (3) German silver is an alloy of zinc, copper and nickel.
- (4) Bronze is an alloy of copper and tin

Sol. 2

Brass - (copper Zinc)

Bronze - (copper tin)

- 2. The species that has a spin-only magnetic moment of 5.9 BM, is : $(T_d = tetrahedral)$
 - (1) [Ni(CN)₄]²⁻ (square planar)
- (2) $Ni(CO)_4(T_d)$

(3) $[MnBr_{4}]^{2}(T_{d})$

(4) $[NiCl_4]^{2-}(T_d)$

Sol. 3

$$\mu = \sqrt{5(5+2)} = 5.9 \text{ BM}$$

3. For the reaction

$$Fe_2N(s) + \frac{3}{2}H_2(g) \rightleftharpoons 2Fe(s) + NH_3(g)$$

(1)
$$K_c = K_p (RT)^{1/2}$$

(2)
$$K_c = K_p (RT)^{-1/2}$$

(3)
$$K_c = K_p (RT)^{\frac{3}{2}}$$

(4)
$$K_c = K_p(RT)$$

$$Fe_2N(s) + \frac{3}{2}H_2(g) \rightleftharpoons 2Fe(s) + NH_3(g)$$

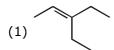
$$\Delta n_g = 1 - \frac{3}{2} = \frac{-1}{2}$$

$$\frac{K_p}{K_c} = (RT)^{\Delta n_g} = (RT)^{-\frac{1}{2}}$$

$$K_c = \frac{K_p}{(RT)^{-1/2}} = K_p \cdot (RT)^{1/2}$$

4. Consider the following reactions:

$$(C_7H_{14})$$
 $\xrightarrow{\text{ozonolysis}}$ 'B' + 'C'


'B'
$$\xrightarrow{(I_2+NaOH)}$$
 yellow ppt Δ $\xrightarrow{Ag_2O}$ silver mirror

'C'
$$\xrightarrow{\text{(I}_2+NaOH)}$$
 no yellow ppt

$$\begin{array}{c} \Delta \\ & \downarrow \\ \text{LiAlH}_4 \\ & \Delta \end{array}$$
'D' $\xrightarrow{\text{Anhydrous ZnCl}_2}$ within 5 minutes

'A' is :

gives white minutes

Sol. 1

(turbidity in 5 min)

- 5. Arrange the following solutions in the decreasing order of pOH:
 - (A) 0.01 M HCI
 - (C) 0.01 M CH₃COONa

 - (1)'(A) > (C) > (D) > (B) (3)'(B) > (C) > (D) > (A)
- (B) 0.01 M NaOH
- (D) 0.01 M NaCl
- (2) (B) > (D) > (C) > (A) (4) (A) > (D) > (C) > (B)

Sol.

(i)
$$10^{-2} \text{ M HCI} \Rightarrow [\text{H}^+] = 10^{-2} \text{ M} \rightarrow \text{pH} = 2$$

(ii)
$$10^{-2}$$
 M NaOH \Rightarrow [OH⁻] = 10^{-2} M \rightarrow pOH = 2

(iii)
$$10^{-2}$$
 M CH₃COO-Na⁺ \Rightarrow [OH⁺] > 10^{-7} \Rightarrow pOH < 7

(iv)
$$10^{-2}$$
 M NaCl \Rightarrow Neutral pOH = 7

6. The variation of equilibrium constant with temperature is given below:

Temperature

$$T_1 = 25^{\circ}C$$

 $T_2 = 100^{\circ}C$

$$K_1 = 10$$

$$T_{2}^{1} = 100^{\circ}C$$

$$K_2 = 100$$

The value of ΔH^0 , ΔG^0 at T_1 and ΔG^0 at T_2 (in Kj mol⁻¹) respectively, are close to [use $R = 8.314JK^{-1} \text{ mol}^{-1}$]

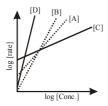
Sol.

$$In \begin{bmatrix} k_2 \\ k_1 \end{bmatrix} = \frac{\Delta H^{\circ}}{R} \left\{ \frac{1}{T_1} - \frac{1}{T_2} \right\}$$

$$In(10) = \frac{\Delta H^{\circ}}{R} \left\{ \frac{1}{298} - \frac{1}{373} \right\}$$

$$\frac{373 \times 298 \times 8.314 \times 2.303}{75} = \Delta H^{\circ} = 28.37 \text{ kJ mol}^{-1}$$

$$\Delta G^{\circ}_{T_1} = -RT_1In(K_1) = -298R In(10) = -5.71 kJ mol^{-1}$$


$$\Delta G^{\circ}_{T_2} = -RT_2 \ln(K_2) = -373R \ln(100)$$

$$= -14.283 \text{ kJ/mol}$$

7. Consider the following reactions

$$A \rightarrow P1$$
; $B \rightarrow P2$; $C \rightarrow P3$; $D \rightarrow P4$,

The order of the above reactions are a,b,c and d, respectively. The following graph is obtained when log[rate] vs. log[conc.] are plotted:

Among the following the correct sequence for the order of the reactions is :

Sol. 3

$$A \rightarrow P1$$
 $B \rightarrow P2$ $C \rightarrow P3$ $D \rightarrow P4$ Rate = K (conc.) order

Slope = order According graph d > b > a > c order of slope

8. The major product obtained from the following reactions is :

$$O_2N - \hspace{-0.1cm} \begin{array}{c} \hspace{-0.1cm} O \\ \hspace{-0.1cm} \end{array} \hspace{-0.1cm} \longrightarrow \hspace{-0.1cm} C \hspace{-0$$

$$(1) \bigcup_{O_2N} OCH_3$$

$$(2) \bigcup_{O_2N} OH$$

$$(3) \bigcup_{O_2N} OCH_3$$

$$(4) \bigcup_{O_2N} OH$$

$$O_{2}N \xrightarrow{\qquad} C = C \xrightarrow{\qquad} OCH_{3} \xrightarrow{\qquad} Hg^{2+}/H^{+} \xrightarrow{\qquad} O_{2}N \xrightarrow{\qquad} CH_{2} \xrightarrow{\qquad} CH_{2} \xrightarrow{\qquad} OCH_{3}$$

- **9.** Which of the following compounds shows geometrical isomerism?
 - (1) 2-methylpent-1-ene
- (2) 4-methylpent-2-ene
- (3) 2-methylpent-2-ene
- (4) 4-methylpent-1-ene

Sol. 2

- **10.** The lanthanoid that does NOT shows +4 oxidation state is :
 - (1) Dy

(2) Ce

(3) Tb

(4) Eu

Sol. 4

Fact

11. The major products of the following reactions are :

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{- CH - CH - CH}_3 \\ \text{OSO}_2\text{CH}_3 \end{array} \xrightarrow{\begin{array}{c} \text{(i) KOt}_{\text{Bu}}/\!\!\Delta \\ \text{(ii) O}_3/\!\!H_2\!\!O_2 \end{array}}$$

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 - \text{CH} - \text{CH} - \text{CH}_3 \\ \text{OSO}_2 \text{CH}_3 \end{array} \xrightarrow{\begin{array}{c} \text{KOt}_{\text{Bu}} \\ \Delta \end{array}} \text{CH}_3 - \text{CH} - \text{CH} = \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_3 \end{array}$$

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 - \text{CH} - \text{COOH} + \text{HCOOH} \\ \text{CH}_3 \end{array}$$

12. The major product of the following reaction is :

$$CH_3$$
 $2HBr$
 NO_2

(3)
$$\operatorname{CH}_3$$
 Br NO_2 Br

Sol. 2

$$CH_3$$
 $2HBr$
 Br
 NO_2
 OCH_3
 OC

13. The increasing order of pK_b values of the following compounds is :

(1) I < II < III < IV

(2) II < IV < III < I

(3) I < II < IV < III

(4) II < I < III < IV

Sol. 3

Order of pK_b

$$N(CH_3)_2 \qquad N(CH_3)_2 \qquad NHCH_3 \qquad NHCH_3$$

$$OCH_3 \qquad OCH_3$$

6th September 2020 | (Shift-1), Chemistry

- **14.** kraft temperature is the temperature :
 - (1) Above which the aqueous solution of detergents starts boiling
 - (2) Below which the formation of micelles takes place.
 - (3) Above which the formation of micelles takes place.
 - (4) Below which the aqueous solution of detergents starts freezing.
- Sol. 3

 T_{ν} + temp. above which formation of micelles takes place.

15. The set that contains atomic numbers of only transition elements, is ?

Sol. 2

Tranition elements = 21 to 30 37 to 48 57 & 72 to 80

Ans. 21, 25, 42 & 72

16. Consider the Assertion and Reason given below.

Assertion (A): Ethene polymerized in the presence of Ziegler Natta Catalyst at high temperature and pressure is used to make buckets and dustbins.

Reason (R): High density polymers are closely packed and are chemically inert.

Choose the correct answer from the following:

- (1) (A) and (R) both are wrong.
- (2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (3) (A) is correct but (R) is wrong
- (4) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- Sol. 2

From ziegler - Natta catalyst HDPE is produced, HDPE is closely packed and are chemically inert, so used to make backet and dustbin.

17. A solution of two components containing n_1 moles of the 1^{st} component and n_2 moles of the 2^{nd} component is prepared. M_1 and M_2 are the molecular weights of component 1 and 2 respectively. If d is the density of the solution in g mL⁻¹, C_2 is the molarity and X_2 is the mole fraction of the 2^{nd} component, then C_2 can be expressed as:

(1)
$$C_2 = \frac{dx_1}{M_2 + x_2(M_2 - M_1)}$$

(2)
$$C_2 = \frac{1000x_2}{M_1 + x_2(M_2 - M_1)}$$

(3)
$$C_2 = \frac{dx_2}{M_2 + x_2(M_2 - M_1)}$$

(4)
$$C_2 = \frac{1000 dx_2}{M_1 + x_2 (M_2 - M_1)}$$

$$C_2 = \frac{X_2}{[X_2M_1 + (1 - X_2)M_2]/d} \times 1000$$

$$C_2 = \frac{1000 \, dx_2}{M_1 + (M_2 - M_1)x_2}$$

- **18.** The correct statement with respect to dinitrogen is ?
 - (1) Liquid dinitrogen is not used in cryosurgery.
 - (2) N₂ is paramagnetic in nature
 - (3) It can combine with dioxygen at 25°C
 - (4) It can be used as an inert diluent for reactive chemicals.
- Sol. 4
 - (1) Liquid nitrogen is used as a refrigerant to preserve biological material food items and in cryosurgery.
 - (2) N_2 is diamagnetic, with no unpaired electrons.
 - (3) N_2 does not combine with oxygen, hydrogen or most other elements. Nitrogen will combine with oxygen, however; in the presence of lightining or a spark.
 - (4) In iron and chemical Industry inert diluent for reactive chemicals.
- **19.** Among the sulphates of alkaline earth metals, the solubilities of BeSO₄ and MgSO₄ in water, respectively, are :
 - (1) Poor and high

(2) High and high

(3) Poor and poor

(4) High and poor

Sol. 2

Order of solubility of sulphate of Alkaline earth metals

 $BeSO_4 > MgSO_4 > CaSO_4 > SrSO_4 > BaSO_4$

- **20.** The presence of soluble fluoride ion upto 1ppm concentration in drinking water, is :
 - (1) Harmful to skin

(2) Harmful to bones

(3) Safe for teeth

(4) Harmful for teeth

Sol. 3

Environmental chemistry - safe for teeth

- 21. A spherical balloon of radius 3cm containing helium gas has a pressure of 48×10^{-3} bar. At the same temperature, the pressure, of a spherical balloon of radius 12cm containing the same amount of gas will be...... \times 10⁻⁶ bar.
- Sol. 750

$$moles = \frac{48 \times 10^{-3} \times \frac{4}{3\pi} (3cm)^3}{R \times T}$$

moles =
$$\frac{P \times \frac{4}{3\pi} (12cm)^3}{R T}$$

$$P \times 144 \times 12 = 48 \times 9 \times 3 \times 10^{-3}$$

$$P = \frac{27}{36} \times 10^{-3}$$

$$P = \frac{27000}{36} \times 10^{-6}$$

$$P = \frac{3000}{4} \times 10^{-6}$$

$$P = 750 \times 10^{-6} \text{ bar}$$

- **22.** The elevation of boiling point of 0.10m aqueous $CrCl_3xNH_3$ solution is two times that of 0.05 m aqueous $CaCl_2$ solution. The value of x is............................. [Assume 100% ionisation of the complex and $CaCl_2$, coordination number of Cr as 6, and that all NH_3 molecules are present inside the coordination sphere]
- **Sol.** 5 $\Delta T_b = i \times K_b \times m$ $i \times 0.1 \times K_b = 3 \times 0.05 \times K_b \times 2$ i = 3 $[Cr(NH_3)_5. Cl] Cl_2 \rightarrow [Cr(NH_3)_5Cl]^{+2} + 2Cl^{-1}$ x = 5
- Potassium chlorate is prepared by the electrolysis of KCl in basic solution $60H^- + Cl^- \longrightarrow ClO_3^- + 3H_2O + 6e^-$ If only 60% of the current is utilized in the reaction, the time (rounded to the nearest hour) required to produce 10g of KClO₃ using a current of 2A is (Given : F = 96,500 C mol⁻¹; molar mass of KClO₃=122g mol⁻¹)
- **Sol.** 11 $\frac{10}{122} \times 6 = \frac{2 \times t(hr) \times 3600 \times 60\%}{96500}$ $t(hr) = \frac{96500}{122 \times 72} = 10.98 hr$ = 11 hours
- 24. In an estimation of bromine by Carius method, 1.6 g of an organic compound gave 1.88 g of AgBr. The mass percentage of bromine in the compound is(Atomic mass, Ag=108, Br=80 g mol^{-1})
- Sol. 50 % Carius method

% of Br =
$$\frac{\text{wt of AgBr}}{\text{wt. of organic compound}} \times 100 \times \frac{\text{molar mass of Br}}{\text{AgBr}}$$

= $\frac{1.88}{1.6} \times \frac{80}{188} \times 100 = \frac{15040}{300.8} = 50\%$

- **25.** The number of CI = O bonds in perchloric acid is, "....."
- Sol. 3

