Date
 : 4th September 2020

 Time
 : 09 : 00 am - 12 : 00 pm

 Subject
 : Maths

1.	Let $y=y(x)$ be the solution of the differential equation, $xy'-y=x^2(x\cos x+\sin x), x > 0$. if				
	$y(\pi) = \pi$, then $y''\left(\frac{\pi}{2}\right) + y\left(\frac{\pi}{2}\right)$ is equal to				
Sol.	(1) $2 + \frac{\pi}{2} + \frac{\pi^2}{4}$	(2) $2+\frac{\pi}{2}$	(3) $1 + \frac{\pi}{2}$	$(4) \ 1 + \frac{\pi}{2} + \frac{\pi^2}{4}$	
	$xy' - y = x^2(x \cos x)$	$xy' - y = x^2(x \cos x + \sin x) \ x > 0$, $y(\pi) = \pi$			
	$y' - \frac{1}{x}y = x\{x\cos x + \sin x\}$				
	I.F. $= e^{-\int \frac{1}{x} dx} = e^{-\ln x} = \frac{1}{x}$ $\therefore y \cdot \frac{1}{x} = \int \frac{1}{x} \cdot x (x \cos x + \sin x) dx$ $\frac{y}{x} = \int (x \cos x + \sin x) dx$				
	$\frac{y}{x} = \int \frac{d}{dx} (x \sin x) dx$				
	$\frac{y}{x} = x \sin x + C$ $\Rightarrow y = x^{2} \sin x + C x$ $x = \pi, y = \pi$ $\pi = \pi C \Rightarrow C = 1$				
	$y = x^2 \sin x + x \Rightarrow Y\left(\frac{\pi}{2}\right) = \frac{\pi^2}{4} + \frac{\pi}{2}$				
	$y' = 2x \sin x + x^{2}\cos x + 1$ $y'' = 2\sin x + 2x\cos x + 2x \cos x - x^{2}\sin x$				
	$Y''\left(\frac{\pi}{2}\right) = 2 - \frac{\pi^2}{4} \Rightarrow Y\left(\frac{\pi}{2}\right) + Y''\left(\frac{\pi}{2}\right) = 2 + \frac{\pi}{2}$				
2.	The value of $\sum_{r=0}^{20} {}^{50-r}C_6$ is equal to:				
	(1) ${}^{51}C_7 - {}^{30}C_7$	(2) ${}^{51}C_7 + {}^{30}C_7$	(3) ${}^{50}C_7 - {}^{30}C_7$	$(4) \ ^{50}C_6 - \ ^{30}C_6$	
Sol.	(1) 20				
	$\sum_{r=0}^{-5} {}^{50-r}C_6$				

4th September 2020 | (Shift-1), Maths

4th September 2020 | (Shift-1), Maths

Page | 3

Let x_0 be the point of Local maxima of $f(x) = \vec{a} \cdot (\vec{b} \times \vec{c})$, 10. where $\vec{a} = x\hat{i} - 2\hat{j} + 3\hat{k}, \vec{b} = -2\hat{i} + x\hat{j} - \hat{k}$ and $\vec{c} = 7\hat{i} - 2\hat{j} + x\hat{k}$. Then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ at $x = x_0$ is : (1) -22 (2) -4 (3) - 30 (4) 14 Sol. (1) $\vec{a}.(\vec{b}\times\vec{c}) = \begin{vmatrix} x & -2 & 3 \\ -2 & x & -1 \\ 7 & -2 & x \end{vmatrix}$ $= x\{x^2 - 2\} + 2\{-2x + 7\} + 3\{4 - 7x\}$ $= x^3 - 2x - 4x + 14 + 12 - 21x$ $f(x) = x^3 - 27x + 26$ $f'(x) = 3x^2 - 27 = 0 \Rightarrow x = \pm 3$ f''(x) = 6xat x = 3, f'' (3) = $6 \times 3 = 18 > 0$ at x = -3, f'' (-3) = $6 \times -3 = -18 < 0$ Max at $x_0 = -3$ $\therefore \vec{a} = (-3, -2, 3), \vec{b} = (-2, -3, -1), \vec{c} = (7, -2, -3)$ $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} = 6 + 6 - 3 - 14 + 6 + 3 - 21 + 4 - 9$ = 25 - 47 = - 22 A triangle ABC lying in the first quadrant has two vertices as A(1,2) and B(3,1) If 11. $\angle BAC = 90^{\circ}$, and ar($\triangle ABC$) = $5\sqrt{5}$ s units, then the abscissa of the vertex C is : (1) $1 + \sqrt{5}$ (2) $1+2\sqrt{5}$ (3) $2\sqrt{5} - 1$ (4) $2 + \sqrt{5}$ Sol. (2)

$$AB = \sqrt{4+1} = \sqrt{5}$$

$$\frac{1}{2} \times \sqrt{5} \times x = 5\sqrt{5}$$

$$x = 10$$

$$m_{AB} = \frac{1}{-2}$$

$$m_{AC} = 2 = \tan\theta$$

$$\therefore \sin\theta = \frac{2}{\sqrt{5}}, \cos\theta = \frac{1}{\sqrt{5}}$$
by parametric co-ordinates
$$a = 1 + x\cos\theta = 1 + 10 \times \frac{1}{\sqrt{5}} = 1 + 2\sqrt{5}$$

4th September 2020 | (Shift-1), Maths

 $\Rightarrow x_1 = \frac{Hx}{10}$ $\tan\theta_2 = \frac{15}{x} = \frac{H}{x_2}$ $\Rightarrow x_2 = \frac{Hx}{15}$ $\therefore x_1 + x_2 = x$ $\Rightarrow \frac{Hx}{10} + \frac{Hx}{15} = x$ \Rightarrow 15H + 10H = 150 \Rightarrow H = 6 m If $(a + \sqrt{2} b \cos x)(a - \sqrt{2} b \cos y) = a^2 - b^2$, where a > b > 0, then $\frac{dx}{dy}$ at $(\frac{\pi}{4}, \frac{\pi}{4})$ is: 20. (4) $\frac{2a+b}{2a-b}$ (2) $\frac{a-2b}{a+2b}$ (3) $\frac{a-b}{a+b}$ (1) $\frac{a+b}{a-b}$ Sol. (1) $(a + \sqrt{2} b \cos x)(a - \sqrt{2} b \cos y) = a^2 - b^2$ diff both sides w.r.t y $-\sqrt{2}b\sin x.\frac{dx}{dy}\left(a-\sqrt{2}b\cos y\right) + \left(a+\sqrt{2}b\cos x\right)\left(\sqrt{2}b\sin y\right) = 0$ $x = y = \frac{\pi}{4} \Rightarrow \frac{-bdx}{dy}(a-b) + (a+b)(b) = 0$ $\frac{dx}{dy} = \frac{a+b}{a-b}$ Suppose a differentiable function f(x) satisfies the identity $f(x+y)=f(x)+f(y)+xy^2+x^2y$, for 21. all real x and y. If $\lim_{x\to 0} \frac{f(x)}{x} = 1$, then f(3) is equal to..... $f(x + y) = f(x) + f(y) + xy^2 + x^2y$ x = y = 0 Sol. $f(0) = 2f(0) \Rightarrow f(0) = 0$ Now, $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{f(x) + f(h) + xh^2 + x^2h - f(x)}{h}$ (take y = h)

4th September 2020 | (Shift-1), Maths

$$f'(x) = \lim_{h \to 0} \frac{f(h)}{h} + \lim_{h \to 0} (x h) + x^{2}$$
$$f'(x) = 1 + 0 + x^{2}$$
$$f'(x) = 1 + x^{2}$$
$$f'(3) = 10$$

22. If the equation of a plane P, passing through the intersection of the planes, x+4y-z+7=0 and 3x+y+5z=8 is ax+by+6z=15 for some a, $b \in R$, then the distance of the point (3,2,-1) from the plane P is..... units.

Sol.
$$p_1 + \lambda p_2 = 0$$

 $(x + 4y - z + 7) + \lambda (3x + y + 5z - 8) = ax + by + 6z - 15$
 $\frac{1 + 3\lambda}{a} = \frac{4 + \lambda}{b} = \frac{-1 + 5\lambda}{6} = \frac{7 - 8\lambda}{-15}$
 $\therefore 15 - 75\lambda = 42 - 48\lambda$
 $-27 = 27\lambda$
 $\lambda = -1$
 \therefore plane is $-2x + 3y - 6z + 15 = 0$
 $d = \left| \frac{-6 + 6 + 6 + 15}{\sqrt{4 + 9 + 36}} \right| = 3$ units

23. If the system of equations x-2y+3z=9

2x+y+z=b

x-7y+az=24, has infinitely many solutions, then a-b is equal to...... D = 0

$$\begin{vmatrix} 1 & -2 & 3 \\ 2 & 1 & 1 \\ 1 & -7 & a \end{vmatrix} = 0$$

$$1(a + 7) + 2(2a - 1) + 3(-14 - 1) = 0$$

$$a + 7 + 4a - 2 - 45 = 0$$

$$5a = 40$$

$$a = 8$$

$$D_{1} = \begin{vmatrix} 9 & -2 & 3 \\ b & 1 & 1 \\ 24 & -7 & 8 \end{vmatrix} = 0$$

$$\Rightarrow 9(8 + 7) + 2(8b - 24) + 3(-7b - 24) = 0$$

$$\Rightarrow 135 + 16b - 48 - 21b - 72 = 0$$

$$15 = 5b \Rightarrow b = 3$$

$$a - b = 5$$

24. Let
$$(2x^2+3x+4)^{10} = \sum_{r=0}^{20} a_r x^r$$
. Then $\frac{a_7}{a_{13}}$ is equal to
Sol. 8

Given
$$(2x^2 + 3x + 4)^{10} = \sum_{r=0}^{20} a_r x^r \dots (1)$$

Replace x by $\frac{2}{x}$ in above identity :

$$\frac{2^{10}(2x^2+3x+4)^{10}}{x^{20}} = \sum_{r=0}^{20} \frac{a_r 2^r}{x^r}$$
$$\Rightarrow 2^{10} \sum_{r=0}^{20} a_r x^r = \sum_{r=0}^{20} a_r 2^r x^{(20-r)} \text{ (from eq. (1))}$$

Now, comparing coefficient of
$$x^7$$
 from both sides (take r =7 in L.H.S. & r = 13 in R.H.S)

$$2^{10}a_7 = a_{13} 2^{13} \Rightarrow \frac{a_7}{a_{13}} = 2^3 = 8$$

25. The probability of a man hitting a target is $\frac{1}{10}$. The least number of shots required, so

that the probability of his hitting the target at least once is greater than $\frac{1}{4}$, is Sol. 3

Probability of hitting
$$P(H) = \frac{1}{10}$$
;

probability of missing $P(M) = \frac{9}{10}$

We have, 1 – (probability of all shots result in failure) > $\frac{1}{4}$

$$= 1 - P(M)^{n} > \frac{1}{4}$$
$$= 1 - \left(\frac{9}{10}\right)^{n} > \frac{1}{4}$$
$$\left(\frac{9}{10}\right)^{n} < \frac{3}{4} ; n \ge 3$$