JEE Main 2020 Paper

Date : $4^{\text {th }}$ September 2020
Time : 09:00am-12:00 pm
Subject : Maths

1. Let $y=y(x)$ be the solution of the differential equation, $x y^{\prime}-y=x^{2}(x \cos x+\sin x), x>0$. if $y(\pi)=\pi$, then $y^{\prime \prime}\left(\frac{\pi}{2}\right)+y\left(\frac{\pi}{2}\right)$ is equal to
(1) $2+\frac{\pi}{2}+\frac{\pi^{2}}{4}$
(2) $2+\frac{\pi}{2}$
(3) $1+\frac{\pi}{2}$
(4) $1+\frac{\pi}{2}+\frac{\pi^{2}}{4}$

Sol. (2)
$x y^{\prime}-y=x^{2}(x \cos x+\sin x) x>0, y(\pi)=\pi$
$y^{\prime}-\frac{1}{x} y=x\{x \cos x+\sin x\}$
I.F. $=e^{-\int \frac{1}{x} d x}=e^{-\ln x}=\frac{1}{x}$
$\therefore \mathrm{y} \cdot \frac{1}{\mathrm{x}}=\int \frac{1}{\mathrm{x}} \cdot \mathrm{x}(\mathrm{x} \cos \mathrm{x}+\sin \mathrm{x}) \mathrm{dx}$
$\frac{y}{x}=\int(x \cos x+\sin x) d x$
$\frac{y}{x}=\int \frac{d}{d x}(x \sin x) d x$
$\frac{y}{x}=x \sin x+C$
$\Rightarrow y=x^{2} \sin x+C x$
$x=\pi, y=\pi$
$\pi=\pi C \Rightarrow C=1$
$y=x^{2} \sin x+x \Rightarrow y\left(\frac{\pi}{2}\right)=\frac{\pi^{2}}{4}+\frac{\pi}{2}$
$y^{\prime}=2 x \sin x+x^{2} \cos x+1$
$y^{\prime \prime}=2 \sin x+2 x \cos x+2 x \cos x-x^{2} \sin x$
$y "\left(\frac{\pi}{2}\right)=2-\frac{\pi^{2}}{4} \Rightarrow y\left(\frac{\pi}{2}\right)+y "\left(\frac{\pi}{2}\right)=2+\frac{\pi}{2}$
2. The value of $\sum_{\mathrm{r}=0}^{20}{ }^{50-\mathrm{r}} \mathrm{C}_{6}$ is equal to:
(1) ${ }^{51} \mathrm{C}_{7}-{ }^{30} \mathrm{C}_{7}$
(2) ${ }^{51} \mathrm{C}_{7}+{ }^{30} \mathrm{C}_{7}$
(3) ${ }^{50} \mathrm{C}_{7}-{ }^{30} \mathrm{C}_{7}$
(4) ${ }^{50} \mathrm{C}_{6}-{ }^{30} \mathrm{C}_{6}$

Sol. (1)
$\sum_{r=0}^{20}{ }^{50-r} C_{6}$

JEE Main 2020 Paper

$={ }^{50} \mathrm{C}_{6}+{ }^{49} \mathrm{C}_{6}+{ }^{48} \mathrm{C}_{6}+\ldots .+{ }^{31} \mathrm{C}_{6}+{ }^{30} \mathrm{C}_{6}$
add and subtract ${ }^{30} \mathrm{C}_{7}$
Using
${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r} \Rightarrow{ }^{30} C_{6}+{ }^{30} C_{7}={ }^{31} C_{7}$
${ }^{31} \mathrm{C}_{6}+{ }^{31} \mathrm{C}_{7}={ }^{32} \mathrm{C}_{7}$
Similarly solving
${ }^{51} \mathrm{C}_{7}{ }^{-30} \mathrm{C}_{7}$
3. Let [t] denote the greatest integer $\leq t$. Then the equation in $x,[x]^{2}+2[x+2]-7=0$ has :
(1) exactly four integral solutions.
(2) infinitely many solutions.
(3) no integral solution.
(4) exactly two solutions.

Sol. (2)
$[x]^{2}+2[x+2]-7=0$
$[x]^{2}+2[x]-3=0$
let $[x]=y$
$y^{2}+3 y-y-3=0$
$(y-1)(y+3)=0$
$[x]=1$ or $[x]=-3$
$x \in[1,2)$ or $x \in[-3,-2)$
4. Let $P(3,3)$ be a point on the hyperbola, $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the normal to it at P intersects the x-axis at $(9,0)$ and e is its eccentricity, then the ordered pair $\left(a^{2}, e^{2}\right)$ is equal to :
(1) $(9,3)$
(2) $\left(\frac{9}{2}, 2\right)$
(3) $\left(\frac{9}{2}, 3\right)$
(4) $\left(\frac{3}{2}, 2\right)$

Sol. (3)
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$\frac{9}{a^{2}}-\frac{9}{b^{2}}=1$
Equation of normal $\Rightarrow \frac{a^{2} x}{3}+\frac{b^{2} y}{3}=a^{2} e^{2}$
at x - axis $\Rightarrow y=0$
$\frac{a^{2} x}{3}=a^{2} e^{2} \Rightarrow x=3 e^{2}=9$
$e^{2}=3$
$e=\sqrt{3}$
$e^{2}=1+\frac{b^{2}}{a^{2}}=3$
$b^{2}=2 a^{2}$
put in equation 1
$\frac{9}{a^{2}}-\frac{9}{2 a^{2}}=1 \Rightarrow \frac{9}{2 a^{2}}=1 \Rightarrow a^{2}=\frac{9}{2}$
$\therefore\left(a^{2}, e^{2}\right)=\left(\frac{9}{2}, 3\right)$

JEE Main 2020 Paper

5. Let $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$ be a given ellipse, length of whose latus rectum is 10 . If its eccentricity is the maximum value of the function, $\phi(t)=\frac{5}{12}+t-t^{2}$, then $a^{2}+b^{2}$ is equal
(1) 135
(2) 116
(3) 126
(4) 145

Sol. (3)
L.R $=\frac{2 b^{2}}{a}=10$
$\phi(\mathrm{t})=\frac{5}{12}-\left(\mathrm{t}-\frac{1}{2}\right)^{2}+\frac{1}{4}=\frac{8}{12}-\left(\mathrm{t}-\frac{1}{2}\right)^{2}$
$\therefore \phi(\mathrm{t})_{\text {max }}=\frac{2}{3}=\mathrm{e}$
$\mathrm{e}^{2}=1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{4}{9} \Rightarrow \frac{\mathrm{~b}^{2}}{\mathrm{a}^{2}}=\frac{5}{9}$
From (1)
$\frac{\mathrm{b}^{2}}{\mathrm{a} \cdot \mathrm{a}}=\frac{5}{9}$
$\frac{5}{a}=\frac{5}{9} \Rightarrow a=9$
$\therefore \mathrm{b}^{2}=45$
$a^{2}+b^{2}=81+45=126$
6. Let $f(x)=\int \frac{\sqrt{x}}{(1+x)^{2}} d x(x \geq 0)$. Then $f(3)-f(1)$ is eqaul to:
(1) $-\frac{\pi}{6}+\frac{1}{2}+\frac{\sqrt{3}}{4}$
(2) $\frac{\pi}{6}+\frac{1}{2}-\frac{\sqrt{3}}{4}$
(3) $-\frac{\pi}{12}+\frac{1}{2}+\frac{\sqrt{3}}{4}$
(4) $\frac{\pi}{12}+\frac{1}{2}-\frac{\sqrt{3}}{4}$

Sol. (4)
$f(x)=\int \frac{\sqrt{x}}{(1+x)^{2}} d x$
Substituting $x=\tan ^{2} t$
$\mathrm{dx}=2$ tant $\sec ^{2} \mathrm{t} \mathrm{dt}$
$f(x)=\int \frac{\tan t .2 \tan t \sec ^{2} t d t}{\sec ^{4} t}$
$=2 \int \sin ^{2} t d t$
$x=3 \Rightarrow t=\frac{\pi}{3}$
$x=1 \Rightarrow t=\frac{\pi}{4}$

JEE Main 2020 Paper

$\therefore f(3)-f(1)=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}(1-\cos 2 t) d t \Rightarrow\left(t-\frac{1}{2} \sin 2 t\right)_{\frac{\pi}{4}}^{\frac{\pi}{3}}=\frac{\pi}{12}+\frac{1}{2}-\frac{\sqrt{3}}{4}$
7. If $1+\left(1-2^{2} \cdot 1\right)+\left(1-4^{2} .3\right)+\left(1-6^{2} \cdot 5\right)+\ldots \ldots+\left(1-20^{2} .19\right)=\alpha-220 \beta$, then an ordered pair (α, β) is equal to:
(1) $(10,97)$
(2) $(11,103)$
(3) $(11,97)$
(4) $(10,103)$

Sol. (2)
$1+S n$
$T_{n}=1-(2 n)^{2}(2 n-1)$
$=1-4 n^{2}(2 n-1)$
$=1-8 n^{3}+4 n^{2}$
$S_{n}=\sum_{n=1}^{10} T_{n}=n-\sum 8 n^{3}+\sum 4 n^{2}$
$=n-8 \times \frac{n^{2}(n+1)^{2}}{4}+\frac{4 n(n+1)(2 n+1)}{6}$
$S_{10}=10-2 \times 100 \times 121+\frac{2}{3} \times 10 \times 11 \times 21$
$=10-24200+1540$
$=10-22660$
\therefore Sum of series $=11-220 \times 103=\alpha-220 \beta$
$\alpha=11, \beta=103$
8. The integral $\int\left(\frac{x}{x \sin x+\cos x}\right)^{2} d x$ is equal to (where C is a constant of integration):
(1) $\tan x-\frac{x \sec x}{x \sin x+\cos x}+C$
(2) $\sec x-\frac{x \tan x}{x \sin x+\cos x}+C$
(3) $\sec x+\frac{x \tan x}{x \sin x+\cos x}+C$
(4) $\tan x+\frac{x \sec x}{x \sin x+\cos x}+C$

Sol. (1)
$\int\left(\frac{x}{x \sin x+\cos x}\right)^{2} d x$
$\int \underbrace{x \sec x}_{I} \cdot \underbrace{\frac{x \cos x}{(x \sin x+\cos x)^{2}} d x}_{\text {II }}$
Put $(x \sin x+\cos x)=t \Rightarrow x \cos x d x=d t$ in integration of II
$=x \sec x\left(\frac{-1}{x \sin x+\cos x}\right)+\int \frac{\sec x+x \sec x \tan x}{(x \sin x+\cos x)} d x$

JEE Main 2020 Paper

$$
\begin{aligned}
& =\frac{-x \sec x}{x \sin x+\cos x}+\int \frac{(\cos x+x \sin x)}{\cos ^{2} x(x \sin x+\cos x)} d x \\
& =\frac{-x \sec x}{x \sin x+\cos x}+\tan x+C
\end{aligned}
$$

9. Let $f(x)=|x-2|$ and $g(x)=f(f(x)), x \in[0,4]$. Then $\int_{0}^{3}(g(x)-f(x)) d x$ is equal to:
(1) $\frac{1}{2}$
(2) 0
(3) 1
(4) $\frac{3}{2}$

Sol. (3)

$$
\begin{aligned}
& f(x)=|x-2|= \begin{cases}x-2, & x \geq 2 \\
2-x, & x<2\end{cases} \\
& g(x)=||x-2|-2|= \begin{cases}|x-4|, & x \geq 2 \\
|x|, & x<2\end{cases} \\
& =\left\{\begin{array}{cc}
x-4, & x \geq 4 \\
x, & x \in[0,2)
\end{array}\right.
\end{aligned}
$$

$$
\therefore \int_{0}^{3}(g(x)-f(x)) d x=\int_{0}^{3} g(x)-\int_{0}^{3} f(x) d x
$$

$$
=\left(\frac{1}{2} \times 2 \times 2+1+\frac{1}{2} \times 1 \times 1\right)-\left(\frac{1}{2} \times 2 \times 2+\frac{1}{2} \times 1 \times 1\right)=\frac{7}{2}-\frac{5}{2}=1
$$

JEE Main 2020 Paper

10. Let x_{0} be the point of Local maxima of $f(x)=\vec{a} .(\bar{b} \times \vec{c})$, where $\vec{a}=x \hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=-2 \hat{i}+x \hat{j}-\hat{k}$ and $\vec{c}=7 \hat{i}-2 \hat{j}+x \hat{k}$. Then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ at $x=x_{0}$ is :
(1) -22
(2) -4
(3) -30
(4) 14

Sol. (1)
a. $(\vec{b} \times \vec{c})=\left|\begin{array}{ccc}x & -2 & 3 \\ -2 & x & -1 \\ 7 & -2 & x\end{array}\right|$
$=x\left\{x^{2}-2\right\}+2\{-2 x+7\}+3\{4-7 x\}$
$=x^{3}-2 x-4 x+14+12-21 x$
$f(x)=x^{3}-27 x+26$
$f^{\prime}(x)=3 x^{2}-27=0 \Rightarrow x= \pm 3$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=6 \mathrm{x}$
at $\mathrm{x}=3, \mathrm{f}^{\prime \prime}(3)=6 \times 3=18>0$
at $x=-3, f^{\prime \prime}(-3)=6 x-3=-18<0$
Max at $\mathrm{x}_{0}=-3$
$\therefore \overrightarrow{\mathrm{a}}=(-3,-2,3), \vec{b}=(-2,-3,-1), \overrightarrow{\mathrm{c}}=(7,-2,-3)$
$\vec{a} \cdot \vec{b}+\vec{b} . \vec{c}+\vec{c} \cdot \vec{a}=6+6-3-14+6+3-21+4-9$
$=25-47=-22$
11. A triangle $A B C$ lying in the first quadrant has two vertices as $A(1,2)$ and $B(3,1)$ If $\angle B A C=90^{\circ}$, and $\operatorname{ar}(\triangle A B C)=5 \sqrt{5}$ s units, then the abscissa of the vertex C is :
(1) $1+\sqrt{5}$
(2) $1+2 \sqrt{5}$
(3) $2 \sqrt{5}-1$
(4) $2+\sqrt{5}$

Sol. (2)

$A B=\sqrt{4+1}=\sqrt{5}$
$\frac{1}{2} \times \sqrt{5} \times x=5 \sqrt{5}$
$x=10$
$m_{A B}=\frac{1}{-2}$
$\mathrm{m}_{\mathrm{AC}}=2=\tan \theta$
$\therefore \sin \theta=\frac{2}{\sqrt{5}}, \cos \theta=\frac{1}{\sqrt{5}}$
by parametric co-ordinates
$a=1+x \cos \theta=1+10 \times \frac{1}{\sqrt{5}}=1+2 \sqrt{5}$

JEE Main 2020 Paper

12. Let f be a twice differentiable function on $(1,6)$. If $f(2)=8, f^{\prime}(2)=5, f^{\prime}(x) \geq 1$ and $f^{\prime \prime}(x) \geq 4$, for all $x \in(1,6)$, then:
(1) $f(5)+f(5) \geq 28$
(2) $f^{\prime}(5)+f^{\prime}(5) \leq 20$
(3) $f(5) \leq 10$
(4) $f(5)+f^{\prime}(5) \leq 26$

Sol. (1)
$f(2)=8, f^{\prime}(2)=5, f^{\prime}(x) \geq 1, f^{\prime \prime}(x) \geq 4$
$x \in(1,6)$
$\int_{2}^{5} f^{\prime}(x) \geq \int_{2}^{5} 1 d x$
$f(5)-f(2) \geq 3$
$f(5) \geq 11$
also $\int_{2}^{5} f^{\prime \prime}(x) d x \geq \int_{2}^{5} 4 d x$
$\mathrm{f}^{\prime}(5)-\mathrm{f}^{\prime}(2) \geq 12$
$\mathrm{f}^{\prime}(5)-5 \geq 12$
$\mathrm{f}^{\prime}(5) \geq 17$
adding (1) \& (2)
we get,
$f(5)+f^{\prime}(5) \geq 28$
13. Let α and β be the roots of $x^{2}-3 x+p=0$ and γ and δ be the roots of $x^{2}-6 x+q=0$. If $\alpha, \beta, \gamma, \delta$ form a geometric progression. Then ratio ($2 \mathrm{q}+\mathrm{p}$): ($2 \mathrm{q}-\mathrm{p}$) is:
(1) $33: 31$
(2) $9: 7$
(3) $3: 1$
(4) $5: 3$

Sol. (2)

Roots of $x^{2}-3 x+p=0$ are α, β
and roots of $x^{2}-6 x+q=0$ are γ, δ
$\alpha+\beta=3$
$\gamma+\delta=6$
$\alpha=a, \beta=a r, \gamma=a r^{2}, \delta=a r^{3}$
$a(1+r)=3$
$a r^{2}(1+r)=6$
Divide (2) by (1)
$r^{2}=2$
$\alpha \cdot \beta=p=a^{2} r, \quad \gamma \cdot \delta=q=a^{2} r^{5}$
$\Rightarrow \frac{2 q+p}{2 q-p}=\frac{2 r^{4}+1}{2 r^{4}-1}=\frac{2.2^{2}+1}{2.2^{2}-1}=\frac{9}{7}$
14. Let $u=\frac{2 z+i}{z-k i}, z=x+i y$ and $k>0$. If the curve represented by $\operatorname{Re}(u)+\operatorname{Im}(u)=1$ intersects the y-axis at the points P and Q where $P Q=5$, then the value of k is :
(1) 4
(2) $1 / 2$
(3) 2
(4) $3 / 2$

JEE Main 2020 Paper

Sol. (3)

$$
\begin{aligned}
& u=\frac{2 z+i}{z-k i^{\prime}}, \quad z=x+i y \\
& =\frac{2 x+i(2 y+1)}{x+i(y-k)} \times \frac{x-i(y-k)}{x-i(y-k)} \\
& \Rightarrow \frac{2 x^{2}+(2 y+1)(y-k)+i\{2 x y+x-2 x y+2 x k\}}{x^{2}+(y-k)^{2}}
\end{aligned}
$$

$\operatorname{Re}(u)+\operatorname{Img}(u)=1$
$2 x^{2}+(2 y+1)(y-k)+x+2 x k=x^{2}+(y-k)^{2}$
at $y-a x i s, x=0$
$(2 y+1)(y-k)=(y-k)^{2}$
$2 y^{2}+y-2 y k-k=y^{2}+k^{2}-2 y k$
Roots of $y^{2}+y-\left(k+k^{2}\right)=0$ are y_{1} and y_{2}
diff. of roots $=5$

$$
\begin{aligned}
& \sqrt{1+4 \mathrm{k}+4 \mathrm{k}^{2}}=5 \\
& 4 \mathrm{k}^{2}+4 \mathrm{k}=24 \\
& \mathrm{k}^{2}+\mathrm{k}-6=0 \\
& (\mathrm{k}+3)(\mathrm{k}-2)=0 \\
& \mathrm{k}=2
\end{aligned}
$$

15. If $A=\left[\begin{array}{cc}\cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta\end{array}\right],\left(\theta=\frac{\pi}{24}\right)$ and $A^{5}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $i=\sqrt{-1}$, then which one of the following is not true?
(1) $a^{2}-d^{2}=0$
(2) $a^{2}-c^{2}=1$
(3) $0 \leq a^{2}+b^{2} \leq 1$
(4) $a^{2}-b^{2}=\frac{1}{2}$

Sol. (4)

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
\cos \theta & i \sin \theta \\
i \sin \theta & \cos \theta
\end{array}\right] \\
A^{2} & =\left[\begin{array}{ll}
\cos \theta & i \sin \theta \\
i \sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & i \sin \theta \\
i \sin \theta & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \theta-\sin ^{2} \theta & 2 i \sin \theta \cos \theta \\
2 i \cos \theta \sin \theta & \cos ^{2} \theta-\sin ^{2} \theta
\end{array}\right] \\
A^{2} & =\left[\begin{array}{cc}
\cos 2 \theta & i \sin 2 \theta \\
i \sin 2 \theta & \cos 2 \theta
\end{array}\right] \\
A^{3} & =A^{2} \cdot A=\left[\begin{array}{cc}
\cos 2 \theta & i \sin 2 \theta \\
i \sin 2 \theta & \cos 2 \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & i \sin \theta \\
i \sin \theta & \cos \theta
\end{array}\right]
\end{aligned}
$$

JEE Main 2020 Paper

$=\left[\begin{array}{cc}\cos 3 \theta & i \sin 3 \theta \\ i \sin 3 \theta & \cos 3 \theta\end{array}\right]$
Similarly,
$A^{5}=\left[\begin{array}{ll}\cos 5 \theta & i \sin 5 \theta \\ i \sin 5 \theta & \cos 5 \theta\end{array}\right]$
$a=d=\cos (5 \theta)$
$b=c=i \sin (5 \theta)$
$\mathrm{a}^{2}-\mathrm{b}^{2}=\cos ^{2}(5 \theta)+\sin ^{2} 5 \theta=1$
16. The mean and variance of 8 observations are 10 and 13.5 , respectively. If 6 of these observations are $5,7,10,12,14,15$, then the absolute difference of the remaining two observations is:
(1) 3
(2) 9
(3) 7
(4) 5

Sol. 3
$\frac{5+7+10+12+14+15+x+y}{8}=10$
$x+y=17$
variance $=\frac{5^{2}+7^{2}+10^{2}+12^{2}+14^{2}+15^{2}+x^{2}+y^{2}}{8}-100=13.5$
$=\frac{739+x^{2}+y^{2}}{8}-100=13.5$
$x^{2}+y^{2}=169$
$\therefore x=12, y=5$
$|x-y|=7$
17. A survey shows that 63% of the people in a city read newspaper A whereas 76% read newspaper B. If $x \%$ of the people read both the newspapers, then a possible value of x can be:
(1) 37
(2) 29
(3) 65
(4) 55

Sol. (4)

$\mathrm{n}(\mathrm{B}) \leq \mathrm{n}(\mathrm{A} \cup B) \leq \mathrm{n}(\mathrm{U})$
$\Rightarrow 76 \leq 76+63-\mathrm{x} \leq 100$
$\Rightarrow-63 \leq-x \leq-39$
$\Rightarrow 63 \geq x \geq 39$

JEE Main 2020 Paper

18. Given the following two statements:
$\left(\mathrm{S}_{1}\right):(\mathrm{q} \vee \mathrm{p}) \rightarrow(\mathrm{P} \leftrightarrow \sim \mathrm{q})$ is a tautology
$\left(\mathrm{S}_{2}\right): \sim \mathrm{q} \wedge(\sim \mathrm{p} \leftrightarrow \mathrm{q})$ is a fallacy. Then:
(1) only $\left(S_{1}\right)$ is correct.
(2) both $\left(\mathrm{S}_{1}\right)$ and (S_{2}) are correct.
(3) only $\left(\mathrm{S}_{2}\right)$ is correct
(4) both $\left(\mathrm{S}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ are not correct.

Sol. (4)

p	q	$\sim \mathrm{q}$	qvp	$\mathrm{p} \leftrightarrow \sim \mathrm{q}$	$(\mathrm{qvp}) \rightarrow(\mathrm{p} \leftrightarrow \sim \mathrm{q})$
T	T	F	T	F	F
T	F	T	T	T	T
F	T	F	T	T	T
F	F	T	F	F	T

S_{1} is not correct

$\mathrm{S}_{2}=$| p | q | $\sim \mathrm{q}$ | $\sim \mathrm{p}$ | $\sim \mathrm{p} \leftrightarrow \mathrm{q}$ | $\sim \mathrm{q} \wedge(\sim \mathrm{p} \leftrightarrow \mathrm{q})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | F | F | F | F |
| T | F | T | F | T | T |
| F | T | F | T | T | F |
| F | F | T | T | F | F |

S_{2} is false
19. Two vertical poles $A B=15 \mathrm{~m}$ and $\mathrm{CD}=10 \mathrm{~m}$ are standing apart on a horizontal ground with points A and C on the ground. If P is the point of intersection of $B C$ and $A D$, then the height of P (in m) above the line $A C$ is:
(1) 5
(2) $20 / 3$
(3) $10 / 3$
(4) 6

Sol. (4)

Using similar triangle concept
$\tan \theta_{1}=\frac{10}{x}=\frac{H}{x_{1}}$

JEE Main 2020 Paper

$\Rightarrow x_{1}=\frac{\mathrm{Hx}}{10}$
$\tan \theta_{2}=\frac{15}{x}=\frac{H}{x_{2}}$
$\Rightarrow x_{2}=\frac{H x}{15}$
$\because \mathrm{x}_{1}+\mathrm{x}_{2}=\mathrm{x}$
$\Rightarrow \frac{\mathrm{Hx}}{10}+\frac{\mathrm{Hx}}{15}=\mathrm{x}$
$\Rightarrow 15 \mathrm{H}+10 \mathrm{H}=150$
$\Rightarrow \mathrm{H}=6 \mathrm{~m}$
20. If $(a+\sqrt{2} b \cos x)(a-\sqrt{2} b \cos y)=a^{2}-b^{2}$, where $a>b>0$, then $\frac{d x}{d y}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ is:
(1) $\frac{a+b}{a-b}$
(2) $\frac{a-2 b}{a+2 b}$
(3) $\frac{a-b}{a+b}$
(4) $\frac{2 a+b}{2 a-b}$

Sol. (1)
$(a+\sqrt{2} b \cos x)(a-\sqrt{2} b \cos y)=a^{2}-b^{2}$
diff both sides w.r.t y
$-\sqrt{2} b \sin x \cdot \frac{d x}{d y}(a-\sqrt{2} b \cos y)+(a+\sqrt{2} b \cos x)(\sqrt{2} b \sin y)=0$
$x=y=\frac{\pi}{4} \Rightarrow \frac{-b d x}{d y}(a-b)+(a+b)(b)=0$
$\frac{d x}{d y}=\frac{a+b}{a-b}$
21. Suppose a differentiable function $f(x)$ satisfies the identity $f(x+y)=f(x)+f(y)+x y^{2}+x^{2} y$,for all real x and y. If $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$, then $f(3)$ is equal to.. \qquad
Sol. $\quad f(x+y)=f(x)+f(y)+x y^{2}+x^{2} y$
$x=y=0$
$\mathrm{f}(0)=2 \mathrm{f}(0) \Rightarrow \mathrm{f}(0)=0$
Now, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(x)+f(h)+x h^{2}+x^{2} h-f(x)}{h} \quad($ take $y=h)$

JEE Main 2020 Paper

$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(h)}{h}+\lim _{h \rightarrow 0}(x h)+x^{2}$
$\mathrm{f}^{\prime}(\mathrm{x})=1+0+\mathrm{x}^{2}$
$f^{\prime}(x)=1+x^{2}$
$\mathrm{f}^{\prime}(3)=10$
22. If the equation of a plane P, passing through the intersection of the planes, $x+4 y-z+7=0$ and $3 x+y+5 z=8$ is $a x+b y+6 z=15$ for some $a, b \in R$, then the distance of the point $(3,2,-1)$ from the plane P is units.
Sol. $\quad p_{1}+\lambda p_{2}=0$
$(x+4 y-z+7)+\lambda(3 x+y+5 z-8)=a x+b y+6 z-15$
$\frac{1+3 \lambda}{\mathrm{a}}=\frac{4+\lambda}{\mathrm{b}}=\frac{-1+5 \lambda}{6}=\frac{7-8 \lambda}{-15}$
$\therefore 15-75 \lambda=42-48 \lambda$
$-27=27 \lambda$
$\lambda=-1$
\therefore plane is $-2 x+3 y-6 z+15=0$
$d=\left|\frac{-6+6+6+15}{\sqrt{4+9+36}}\right|=3$ units
23. If the system of equations
$x-2 y+3 z=9$
$2 x+y+z=b$
$x-7 y+a z=24$, has infinitely many solutions, then $a-b$ is equal to.
Sol. $\mathrm{D}=0$
$\left|\begin{array}{ccc}1 & -2 & 3 \\ 2 & 1 & 1 \\ 1 & -7 & a\end{array}\right|=0$
$1(a+7)+2(2 a-1)+3(-14-1)=0$
$a+7+4 a-2-45=0$
$5 a=40$
$\mathrm{a}=8$
$D_{1}=\left|\begin{array}{ccc}9 & -2 & 3 \\ b & 1 & 1 \\ 24 & -7 & 8\end{array}\right|=0$
$\Rightarrow 9(8+7)+2(8 b-24)+3(-7 b-24)=0$
$\Rightarrow 135+16 \mathrm{~b}-48-21 \mathrm{~b}-72=0$
$15=5 b \Rightarrow b=3$
$\mathrm{a}-\mathrm{b}=5$

JEE Main 2020 Paper

24. Let $\left(2 x^{2}+3 x+4\right)^{10}=\sum_{r=0}^{20} a_{r} x^{r}$. Then $\frac{a_{7}}{a_{13}}$ is equal to \qquad
Sol. 8
Given $\left(2 x^{2}+3 x+4\right)^{10}=\sum_{r=0}^{20} a_{r} x^{r}$
Replace x by $\frac{2}{\mathrm{x}}$ in above identity :
$\frac{2^{10}\left(2 x^{2}+3 x+4\right)^{10}}{x^{20}}=\sum_{r=0}^{20} \frac{a_{r} 2^{r}}{x^{r}}$
$\Rightarrow 2^{10} \sum_{\mathrm{r}=0}^{20} \mathrm{a}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}=\sum_{\mathrm{r}=0}^{20} \mathrm{a}_{\mathrm{r}} 2^{\mathrm{r}} \mathrm{x}^{(20-\mathrm{r})}$ (from eq. (1))
Now, comparing coefficient of x^{7} from both sides
(take $r=7$ in L.H.S. \& $r=13$ in R.H.S)
$2^{10} a_{7}=a_{13} 2^{13} \Rightarrow \frac{a_{7}}{a_{13}}=2^{3}=8$
25. The probability of a man hitting a target is $\frac{1}{10}$. The least number of shots required, so that the probability of his hitting the target at least once is greater than $\frac{1}{4}$, is
Sol. 3
Probability of hitting $P(H)=\frac{1}{10}$;
probability of missing $P(M)=\frac{9}{10}$
We have, 1 - (probability of all shots result in failure) $>\frac{1}{4}$
$=1-P(M)^{n}>\frac{1}{4}$
$=1-\left(\frac{9}{10}\right)^{n}>\frac{1}{4}$
$\left(\frac{9}{10}\right)^{n}<\frac{3}{4} ; n \geq 3$
