JEE Main 2020 Paper

Date : $5^{\text {th }}$ September 2020
Time : 02:00 pm- $05: 00 \mathrm{pm}$
Subject : Maths
Q. 1 If $x=1$ is a critical point of the function $f(x)=\left(3 x^{2}+a x-2-a\right) e^{x}$, then:
(1) $x=1$ is a local minima and $x=-\frac{2}{3}$ is a local maxima of f.
(2) $x=1$ is a local maxima and $x=-\frac{2}{3}$ is a local minima of f.
(3) $x=1$ and $x=-\frac{2}{3}$ are local minima of f.
(4) $x=1$ and $x=-\frac{2}{3}$ are local maxima of f.

Sol. 1
$f(x)=\left(3 x^{2}+a x-2-a\right) e^{x}$
$f^{\prime}(x)=\left(3 x^{2}+a x-2-a\right) e^{x}+(6 x+a) e^{x}=0$
$\mathrm{e}^{\mathrm{x}}\left[3 \mathrm{x}^{2}+(\mathrm{a}+6) \mathrm{x}-2\right]=0$
at $x=1,3+a+6-2=0$
$a=-7$
$f(x)=\left(3 x^{2}-7 x+5\right) e^{x}$
$f^{\prime}(x)=(6 x-7) e^{x}+\left(3 x^{2}-7 x+5\right) e^{x}$
$=\mathrm{e}^{\times}\left(3 \mathrm{x}^{2}-\mathrm{x}-2\right)=0$
$=3 x^{2}-3 x+2 x-2=0$
$=(3 x+2)(x-1)=0$
$x=1,-2 / 3$

$x=1$ is point of local minima.
$x=-2 / 3$ is point of local maxima.
Q. $2 \lim _{x \rightarrow 0} \frac{x\left(e^{\left(\sqrt{\left.1+x^{2}+x^{4}-1\right) / x}\right.}-1\right)}{\sqrt{1+x^{2}+x^{4}}-1}$
(1) is equal to $\sqrt{\mathrm{e}}$
(2) is equal to 1
(3) is equal to 0
(4) does not exist

Sol. 2
$\left.\lim _{x \rightarrow 0} \frac{x\left[e^{\left(\sqrt{1+x^{2}+x^{4}}\right.}-1\right) / x}{}-1\right]$

JEE Main 2020 Paper

$\lim _{x \rightarrow 0} \frac{e^{\left(\frac{x^{3}+x}{2}\right)}-1}{\left(\frac{x^{3}+x}{2}\right) \times 2}=2=1$
Q. 3 The statement $(\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{p})) \rightarrow(\mathrm{p} \rightarrow(\mathrm{p} \vee \mathrm{q}))$ is:
(1) equivalent to $(p \vee q) \wedge(\sim p)$
(2) equivalent to $(p \wedge q) \vee(\sim p)$
(3) a contradiction
(4) a tautology

Sol. 4

p	q	$\mathrm{q} \rightarrow \mathrm{p}$	$\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{p})$	$\mathrm{p} \vee \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{p} \vee \mathrm{q}$	$(\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{p})) \rightarrow$ $(\mathrm{p} \rightarrow(\mathrm{p} \vee \mathrm{q}))$
T	T	T	T	T	T	T
T	F	T	T	T	T	T
F	T	F	T	T	T	T
F	F	T	T	F	T	T

Q. 4 If $L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ and $M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$, then:
(1) $\mathrm{M}=\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}$
(2) $\mathrm{M}=\frac{1}{4 \sqrt{2}}+\frac{1}{4} \cos \frac{\pi}{8}$
(3) $L=-\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}$
(4) $\mathrm{L}=\frac{1}{4 \sqrt{2}}-\frac{1}{4} \cos \frac{\pi}{8}$

Sol. 1
$L=\sin \left(\frac{3 \pi}{16}\right) \sin \left(\frac{-\pi}{16}\right)$
$L=\frac{-1}{2}\left[\cos \frac{\pi}{8}-\cos \frac{\pi}{4}\right]$
$L=\frac{1}{2 \sqrt{2}}-\frac{1}{2} \cos \frac{\pi}{8}$

JEE Main 2020 Paper

$M=\cos \left(\frac{3 \pi}{16}\right) \cos \left(\frac{\pi}{16}\right)$
$M=\frac{1}{2}\left[\cos \frac{\pi}{4}+\cos \frac{\pi}{8}\right]$
$M=\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}$
Q. 5 If the sum of the first 20 terms of the series $\log _{\left(7^{1 / 2}\right)} x+\log _{\left(7^{1 / 3}\right)} x+\log _{\left(7^{1 / 4}\right)} x+\ldots$ is 460 , then x is equal to:
(1) $7^{1 / 2}$
(2) 7^{2}
(3) e^{2}
(4) $7^{46 / 21}$

Sol. 2
$(2+3+4+\ldots+21) \log _{7} x=460$
$\Rightarrow \frac{20 \times(21+2)}{2} \log _{7} x=460$
$\Rightarrow 230 \log _{7} x=460 \Rightarrow \log _{7} x=2 \Rightarrow x=7^{2}$
Q. 6 There are 3 sections in a question paper and each section contains 5 questions. A candidate has to answer a total of 5 questions, choosing at least one question from each section. Then the number of ways, in which the candidate can choose the questions, is:
(1) 2250
(2) 2255
(3) 1500
(4) 3000

Sol. 1

$=3\left({ }^{5} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{2}\right)+3\left({ }^{5} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{3}\right)$
$=3(5 \times 5 \times 2 \times 5 \times 2)+3(5 \times 5 \times 10)$
$=750+1500=2250$
Q. 7 If the mean and the standard deviation of the data $3,5,7, a, b$ are 5 and 2 respectively, then a and b are the roots of the equation:
(1) $x^{2}-20 x+18=0$
(2) $x^{2}-10 x+19=0$
(3) $2 x^{2}-20 x+19=0$
(4) $x^{2}-10 x+18=0$

Sol. 2

S.D. $=\sqrt{\frac{\sum x_{i}^{2}}{n}-(\bar{x})^{2}}$

JEE Main 2020 Paper

$(2)^{2}=\frac{83+a^{2}+b^{2}}{5}-(5)^{2}$
$4=\frac{83+\mathrm{a}^{2}+\mathrm{b}^{2}}{5}-25$
$29 \times 5-83=a^{2}+b^{2} \Rightarrow a^{2}+b^{2}=62$
$\frac{a+b+15}{5}=5$
$\Rightarrow a+b=10$
$2 \mathrm{ab}=100-62=38$
$a b=19$
from eq.(1) \& (2)
$\mathrm{x}^{2}-10 \mathrm{x}+19=0$
Q. 8 The derivative of $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ with respect to $\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right)$ at $x=\frac{1}{2}$ is:
(1) $\frac{2 \sqrt{3}}{3}$
(2) $\frac{2 \sqrt{3}}{5}$
(3) $\frac{\sqrt{3}}{12}$
(4) $\frac{\sqrt{3}}{10}$

Sol. 4
$x=\tan \theta$
$\mathrm{u}=\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)=\tan ^{-1}(\tan \theta / 2)=\frac{\theta}{2}=\frac{\tan ^{-1} x}{2}$
$x=\sin \theta$
$v=\tan ^{-1}\left(\frac{2 \sin \theta \cos \theta}{\cos 2 \theta}\right)=2 \theta$
$=2 \sin ^{-1} \mathrm{x}$
$\frac{d u}{d v}=\frac{1}{2\left(1+x^{2}\right)} \times \frac{\sqrt{1-x^{2}}}{2}$
$=\frac{\sqrt{3}}{2 \times 2} \times \frac{4}{5 \times 2}=\frac{\sqrt{3}}{10}$
Q. 9 If $\int \frac{\cos \theta}{5+7 \sin \theta-2 \cos ^{2} \theta} \mathrm{~d} \theta=\mathrm{Alog}_{\mathrm{e}}|\mathrm{B}(\theta)|+\mathrm{C}$ where C is a constant of integration, then $\frac{\mathrm{B}(\theta)}{\mathrm{A}}$ can be:
(1) $\frac{5(2 \sin \theta+1)}{\sin \theta+3}$
(2) $\frac{5(\sin \theta+3)}{2 \sin \theta+1}$
(3) $\frac{2 \sin \theta+1}{\sin \theta+3}$
(4) $\frac{2 \sin \theta+1}{5(\sin \theta+3)}$

Sol. 1
$\int \frac{\cos \theta}{5+7 \sin \theta-2+2 \sin ^{2} \theta} d \theta$
Put $\sin \theta=t, \cos \theta d \theta=d t$

JEE Main 2020 Paper

$$
\begin{aligned}
& \int \frac{d t}{2 t^{2}+7 t+3} \\
& =\frac{1}{2} \int \frac{d t}{t^{2}+\frac{7 t}{2}+\frac{3}{2}}=\frac{1}{2} \int \frac{d t}{t^{2}+\frac{7}{2} t+\left(\frac{7}{4}\right)^{2}-\frac{49}{16}+\frac{24}{16}} \\
& =\frac{1}{2} \int \frac{d t}{(t+7 / 4)^{2}-(5 / 4)^{2}} \\
& \frac{1}{2} \times \frac{1}{2 \cdot \frac{5}{4}} \ln \left|\left[\frac{t+7 / 4-5 / 4}{t+7 / 4+5 / 4}\right]\right| \\
& \frac{1}{5} \ln \left|\left(\frac{\sin \theta+1 / 2}{\sin \theta+3}\right)\right|+C \\
& \frac{B(\theta)}{A}=5\left(\frac{2 \sin \theta+1}{\sin \theta+3}\right)
\end{aligned}
$$

Q. 10 If the length of the chord of the circle, $x^{2}+y^{2}=r^{2}(r>0)$ along the line, $y-2 x=3$ is r, then r^{2} is equal to:
(1) 12
(2) $\frac{24}{5}$
(3) $\frac{9}{5}$
(4) $\frac{12}{5}$

Sol. 4

$$
\begin{aligned}
& A B=2 \sqrt{r^{2}-9 / 5}=r \\
& r^{2}-9 / 5=\frac{r^{2}}{4} \\
& 3 r^{2} / 4=9 / 5 \\
& r^{2}=\frac{12}{5}
\end{aligned}
$$

JEE Main 2020 Paper

Q. 11 If α and β are the roots of the equation, $7 x^{2}-3 x-2=0$, then the value of $\frac{\alpha}{1-\alpha^{2}}+\frac{\beta}{1-\beta^{2}}$ is equal to:
(1) $\frac{27}{32}$
(2) $\frac{1}{24}$
(3) $\frac{27}{16}$
(4) $\frac{3}{8}$

Sol. 3
$\alpha+\beta=3 / 7, \alpha \beta=-2 / 7$
$\frac{(\alpha+\beta)-\alpha \beta(\alpha+\beta)}{1-\left(\alpha^{2}+\beta^{2}\right)+(\alpha \beta)^{2}}$
$\frac{\frac{3}{7}+\frac{2}{7} \times \frac{3}{7}}{1-\left\{\frac{9}{49}+\frac{4}{7}\right\}+\frac{4}{49}}$
$\frac{\left(\frac{21+6}{49}\right)}{\frac{16}{49}} \Rightarrow \frac{27}{16}$
Q. 12 If the sum of the second, third and fourth terms of a positive term G.P. is 3 and the sum of its sixth, seventh and eighth terms is 243 , then the sum of the first 50 terms of this G.P. is:
(1) $\frac{2}{13}\left(3^{50}-1\right)$
(2) $\frac{1}{26}\left(3^{49}-1\right)$
(3) $\frac{1}{13}\left(3^{50}-1\right)$
(4) $\frac{1}{26}\left(3^{50}-1\right)$

Sol. 4
$\frac{a r+a r^{2}+a r^{3}}{a r^{5}+a r^{6}+a r^{7}}=\frac{3}{243}$
$\frac{1+r+r^{2}}{r^{4}\left(1+r+r^{2}\right)}=\frac{1}{81}$
$r=3$
$a(3+9+27)=3$
$a=\frac{3}{39}=\frac{1}{13}$
$S_{50}=a\left(\frac{r^{50}-1}{r-1}\right)$
$=\frac{1}{13}\left\{\frac{3^{50}-1}{2}\right\}$

JEE Main 2020 Paper

Q. 13 If the line $y=m x+c$ is a common tangent to the hyperbola $\frac{x^{2}}{100}-\frac{y^{2}}{64}=1$ and the circle $x^{2}+y^{2}=36$, then which one of the following is true?
(1) $4 c^{2}=369$
(2) $c^{2}=369$
(3) $8 m+5=0$
(4) $5 m=4$

Sol. 1
$c= \pm \sqrt{a^{2} m^{2}-b^{2}}$
$c= \pm \sqrt{100 m^{2}-64}$
$y=m x \pm \sqrt{100 m^{2}-64}$
$\left.d\right|_{(0,0)}=6$
$\left|\frac{\sqrt{100 m^{2}-64}}{\sqrt{m^{2}+1}}\right|=6$
$100 m^{2}-64=36 m^{2}+36$
$64 m^{2}=100$
$m= \pm \frac{10}{8}$
$c^{2}=100 \times \frac{100}{64}-64 \Rightarrow \frac{(164)(36)}{64}$
$4 c^{2}=369$
Q. 14 The area (in sq. units) of the region $A=\{(x, y):(x-1)[x] \leq y \leq 2 \sqrt{x}, 0 \leq x \leq 2\}$ where [t] denotes the greatest integer function, is:
(1) $\frac{4}{3} \sqrt{2}-\frac{1}{2}$
(2) $\frac{8}{3} \sqrt{2}-\frac{1}{2}$
(3) $\frac{8}{3} \sqrt{2}-1$
(4) $\frac{4}{3} \sqrt{2}+1$

Sol. 2
$y=f(x)=(x-1)[x]=\left\{\begin{array}{cc}0 & 0 \leq x<1 \\ x-1 & 1 \leq x<2 \\ 2(x-1) & x=2\end{array}\right.$
$y^{2} \leq 4 x$

JEE Main 2020 Paper

$\int_{0}^{1}(2 \sqrt{x}-0)+\int_{1}^{2}(2 \sqrt{x}-(x-1))$
$\frac{2}{3} \times\left. 2 x^{3 / 2}\right|_{0} ^{1}+\left(\frac{4}{3} x^{3 / 2}-\frac{x^{2}}{2}+x\right)_{1}^{2}$
$\frac{4}{3}+\left\{\left(\frac{4}{3} \times 2 \sqrt{2}-2+2\right)-\left(\frac{4}{3}+\frac{1}{2}\right)\right\}$
$\frac{4}{3}+\frac{8 \sqrt{2}}{3}-\frac{4}{3}-\frac{1}{2}=\frac{8 \sqrt{2}}{3}-\frac{1}{2}$
Q. 15 If $a+x=b+y=c+z+1$, where a, b, c, x, y, z are non-zero distinct real numbers, then $\left|\begin{array}{lll}x & a+y & x+a \\ y & b+y & y+b \\ z & c+y & z+c\end{array}\right|$ is equal to:
(1) $y(a-b)$
(2) 0
(3) $y(b-a)$
(4) $y(a-c)$

Sol. 1
Given $a+x=b+y=c+z+1$

$$
\begin{aligned}
& \text { Now, }\left|\begin{array}{lll}
x & a+y & x+a \\
y & b+y & y+b \\
z & c+y & z+c
\end{array}\right| \\
& =\left|\begin{array}{lll}
x & a+y & a \\
y & b+y & b \\
z & c+y & c
\end{array}\right| \quad\left(C_{3} \rightarrow C_{3}-C_{1}\right) \\
& =\left|\begin{array}{lll}
x & y & a \\
y & y & b \\
z & y & c
\end{array}\right|\left(C_{2} \rightarrow C_{2}-C_{3}\right)
\end{aligned}
$$

$=y\left|\begin{array}{lll}x & 1 & a \\ y & 1 & b \\ z & 1 & c\end{array}\right|$
$R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$
$=y\left|\begin{array}{ccc}x & 1 & a \\ y-x & 0 & b-a \\ z-x & 0 & c-a\end{array}\right|$
$=y[x \times 0-1\{(y-x)(c-a)-(b-a)(z-x)\}+a \times 0]$
$=y[b z-b x-a z+a x-(c y-a y-c x+a x)]$
$=y[b z-b x-a z-c y+a y+c x]$
$=y[b(z-x)+a(y-z)+c(x-y)]$

JEE Main 2020 Paper

$=y[b\{a-c-1\}+a(c-b+1)+c(b-a)]$
$=y[a b-b c-b+a c-a b+a+b c-a c]$
$=y(a-b)$
Q. 16 If for some $\alpha \in R$, the lines $L_{1}: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $L_{2}: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}$ are coplanar, then the line L_{2} passes through the point:
(1) $(2,-10,-2)$
(2) $(10,-2,-2)$
(3) $(10,2,2)$
$(4)(-2,10,2)$

Sol. 1
$A(-1,2,1), B(-2,-1,-1)$
$\left[\begin{array}{lll}\overrightarrow{A B} & \overrightarrow{b_{1}} & \overrightarrow{b_{2}}\end{array}\right]=0$
$\left|\begin{array}{ccc}-1 & -3 & -2 \\ 2 & -1 & 1 \\ \alpha & 5-\alpha & 1\end{array}\right|=0$
$-1(-1+\alpha-5)+3(2-\alpha)-2(10-2 \alpha+\alpha)=0$
$6-\alpha+6-3 \alpha+2 \alpha-20=0$
$-8-2 \alpha=0$
$\alpha=-4$
$L_{2}: \frac{x+2}{-4}=\frac{y+1}{9}=\frac{z+1}{1}$
any point on L_{2} is
($-4 \lambda-2,9 \lambda-1, \lambda-1$)
Q. 17 The value of $\left(\frac{-1+\mathrm{i} \sqrt{3}}{1-\mathrm{i}}\right)^{30}$ is:
(1) $2^{15} i$
(2) -2^{15}
(3) $-2^{15} i$
(4) 6^{5}

Sol. 3

$$
\begin{aligned}
& \left(\frac{-1+i \sqrt{3}}{1-i}\right)^{30} \Rightarrow\left[\left(\frac{-1+i \sqrt{3}}{2}\right)(1+i)\right]^{30} \\
& \omega^{30}(1+i)^{30}=2^{15}(-i)
\end{aligned}
$$

JEE Main 2020 Paper

Q. 18 Let $y=y(x)$ be the solution of the differential equation $\cos x \frac{d y}{d x}+2 y \sin x=\sin 2 x, x \in\left(0, \frac{\pi}{2}\right)$. If $y(\pi / 3)=0$, then $y(\pi / 4)$ is equal to:
(1) $2+\sqrt{2}$
(2) $\sqrt{2}-2$
(3) $\frac{1}{\sqrt{2}}-1$
(4) $2-\sqrt{2}$

Sol. 2

$$
\begin{aligned}
& \frac{d y}{d x}+(2 \tan x) y=2 \sin x \\
& \text { I.F. }=e^{2 I n}(\sec x)=\sec ^{2} x \\
& y\left(\sec ^{2} x\right)=2 \int \frac{\sin x}{\cos ^{2} x} d x \\
& =2 \int \sec x \tan x d x=2 \sec x+c \\
& y\left(\frac{\pi}{3}\right)=0 \\
& 0=2 \times 2+c \\
& \Rightarrow c=-4 \\
& y\left(\sec ^{2} x\right)=2 \sec x-4 \\
& x=\pi / 4 \\
& 2 y=2 \sqrt{2}-4 \\
& y=\sqrt{2}-2
\end{aligned}
$$

Q. 19 If the system of linear equations

$$
\begin{aligned}
& x+y+3 z=0 \\
& x+3 y+k^{2} z=0 \\
& 3 x+y+3 z=0
\end{aligned}
$$

has a non-zero solution (x, y, z) for some $k \in R$, then $x+\left(\frac{y}{z}\right)$ is equal to:
(1) -9
(2) 9
(3) -3
(4) 3

Sol. 3

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 1 & 3 \\
1 & 3 & k^{2} \\
3 & 1 & 3
\end{array}\right|=0 \\
& \left(9-k^{2}\right)-\left(3-3 k^{2}\right)+3(-8)=0 \\
& 9-k^{2}-3+3 k^{2}-24=0 \\
& 2 k^{2}-18=0 \\
& k^{2}=9 \\
& k=3,-3 \\
& \begin{aligned}
& x+y+3 z=0 \\
& \frac{x+3 y+9 z}{}=0 \\
& 2 y+6 z=0
\end{aligned}
\end{aligned}
$$

JEE Main 2020 Paper

$y=-3 z$
$y / z=-3$
$2 x=0$
$\mathrm{x}=0$
$x+\left(\frac{y}{z}\right)=-3$
Q. 20 Which of the following points lies on the tangent to the curve $x^{4} e^{y}+2 \sqrt{y+1}=3$ at the point $(1,0)$?
(1) $(2,6)$
(2) $(2,2)$
(3) $(-2,6)$
(4) $(-2,4)$

Sol. 3
$4 x^{3} e^{y}+x^{4} e^{y} y^{\prime}+\frac{2 y^{\prime}}{2 \sqrt{y+1}}=0$
at $(1,0)$
$4+y^{\prime}+\frac{2 y^{\prime}}{2}=0$
$2 y^{\prime}=-4 \Rightarrow y^{\prime}=-2$
E.O.T. :
$y=-2(x-1)$
$2 x+y=2$
Q. 21 Let $A=\{a, b, c\}$ and $B=\{1,2,3,4\}$. Then the number of elements in the set $C=\{f: A \rightarrow B \mid 2 \in f(A)$ and f is not one-one $\}$ is \qquad
Sol. 19
$C=\{f: A \rightarrow B \mid 2 \in f(A)$ and f is not one-one $\}$
Case-I: If $\mathrm{f}(\mathrm{x})=2 \forall \mathrm{x} \in \mathrm{A}$ then numberof function $=1$
Case-II : If $\mathrm{f}(\mathrm{x})=2$ for exactly two elements then total number of many-one function $={ }^{3} \mathrm{C}_{2}{ }^{3} \mathrm{C}_{1}=9$
Case-III : If $\mathrm{f}(\mathrm{x})=2$ for exactly one elementthen total number of many-one functions $={ }^{3} \mathrm{C}_{1}{ }^{3} \mathrm{C}_{1}=9$
Total $=19$

JEE Main 2020 Paper

Q. 22 The coefficient of x^{4} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{6}$ in powers of x, is \qquad
Sol. 120
$(1+x)^{6}\left(1+x^{2}\right)^{6}$
$6_{c_{\mathrm{r}}} \mathrm{x}^{r} \quad 6_{\mathrm{cs}} \mathrm{x}^{2 s}$
$6_{c_{r}} \sigma_{c_{s}} \quad x^{r+2 s}$

r	s
0	2
4	0
2	1

$\Rightarrow 6_{c_{0}} 6_{c_{2}}+6_{c_{4}} 6_{c_{0}}+6_{c_{2}} 6_{c_{1}}$
$\Rightarrow 15+15+15 \times 6$
$\Rightarrow 120$
Q. 23 Let the vectors $\vec{a}, \vec{b}, \vec{c}$ be such that $|\vec{a}|=2,|\vec{b}|=4$ and $|\vec{c}|=4$. If the projection of \vec{b} on \vec{a} is equal to the projection of \vec{c} on \vec{a} and \vec{b} is perpendicular to \vec{c}, then the value of $|\vec{a}+\vec{b}-\vec{c}|$ is \qquad
Sol. 6
$\Rightarrow \frac{\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}}}{2}=\frac{\overrightarrow{\mathrm{c}} \cdot \vec{a}}{2} \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}$
$\Rightarrow \vec{b} . \vec{c}=0$
$\Rightarrow|\vec{a}+\vec{b}-\vec{c}|=\sqrt{a^{2}+b^{2}+c^{2}+2 \vec{a} \cdot \vec{b}-2 \vec{b} \cdot \vec{c}-2 \vec{a} \cdot \vec{c}}$
$=\sqrt{4+16+16}$
$=6$
Q. 24 If the lines $x+y=a$ and $x-y=b$ touch the curve $y=x^{2}-3 x+2$ at the points where the curve intersects the x-axis, then $\frac{a}{b}$ is equal to \qquad
Sol. 0.5

JEE Main 2020 Paper

$y-0=-1(x-1)$
$x+y=1 \Rightarrow a=1$
$y-0=x-2$
$x-y=2=b=2$
$\frac{a}{b}=\frac{1}{2}$
Q. 25 In a bombing attack, there is 50% chance that a bomb will hit the target. At least two independent hits are required to destroy the target completely. Then the minimum number of bombs, that must be dropped to ensure that there is at least 99% chance of completely destroying the target, is
Sol. 11
Let ' n is total no. of bombs being dropped
at least 2 bombs should hit
\Rightarrow prob ≥ 0.99
$p(x \geq 2) \geq 0.99$
$1-p(x<2) \geq 0.99$
$1-(p(x=0)+p(x=1)) \geq 0.99$
$1-\left[{ }^{n} C_{0}(p)^{0} q^{n}+{ }^{n} C_{1}(p)^{1}(q)^{n-1}\right] \geq 0.99$
$1-\left[q^{n}+p^{n-1}\right] \geq 0.99$
$1-\left[\frac{1}{2^{n}}+\frac{n}{2} \times \frac{1}{2^{n-1}}\right] \geq 0.99$
$1-\frac{1}{2^{n}}(n+1) \geq 0.99$
$0.01 \geq \frac{1}{2^{n}}(n+1)$
$2^{n} \geq 100+100 n$
$\mathrm{n} \geq 11$

JEE Main 2020 Paper

