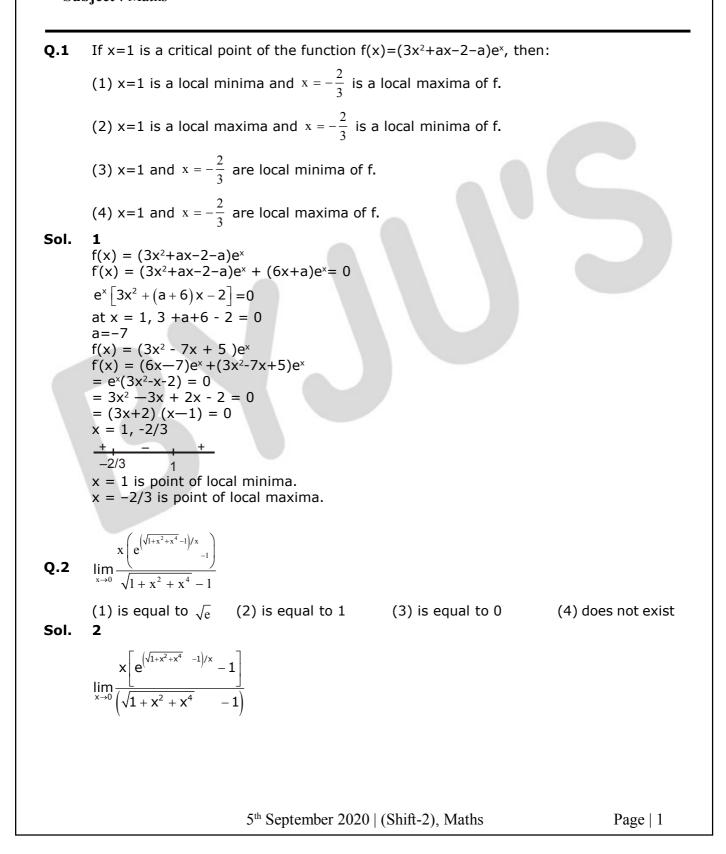
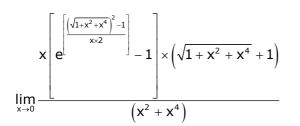
Date : 5th September 2020 **Time** : 02 : 00 pm - 05 : 00 pm **Subject** : Maths





$$\lim_{x \to 0} \frac{e^{\left(\frac{x^3 + x}{2}\right)} - 1}{\left(\frac{x^3 + x}{2}\right) \times 2} = 1$$

Q.3 The statement $(p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow (p \lor q))$ is:

(1) equivalent to $(p \lor q) \land (\sim p)$

- (2) equivalent to $(p \land q) \lor (\sim p)$
- (3) a contradiction
- (4) a tautology **4**

Sol.

р	q	$q \rightarrow p$	$p \rightarrow (q \rightarrow p)$	p∨q	$p \rightarrow p \lor q$	$(p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow (p \lor q))$
Т	Т	Т	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т
F	F	Т	Т	F	Т	Т

Q.4 If
$$L = \sin^2\left(\frac{\pi}{16}\right) - \sin^2\left(\frac{\pi}{8}\right)$$
 and $M = \cos^2\left(\frac{\pi}{16}\right) - \sin^2\left(\frac{\pi}{8}\right)$, then:
(1) $M = \frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$
(2) $M = \frac{1}{4\sqrt{2}} + \frac{1}{4}\cos\frac{\pi}{8}$
(3) $L = -\frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$
(4) $L = \frac{1}{4\sqrt{2}} - \frac{1}{4}\cos\frac{\pi}{8}$

Sol.

1

$$L = \sin\left(\frac{3\pi}{16}\right) \sin\left(\frac{-\pi}{16}\right)$$
$$L = \frac{-1}{2} \left[\cos\frac{\pi}{8} - \cos\frac{\pi}{4}\right]$$
$$L = \frac{1}{2\sqrt{2}} - \frac{1}{2}\cos\frac{\pi}{8}$$

5th September 2020 | (Shift-2), Maths

$$M = \cos\left(\frac{3\pi}{16}\right)\cos\left(\frac{\pi}{16}\right)$$
$$M = \frac{1}{2}\left[\cos\frac{\pi}{4} + \cos\frac{\pi}{8}\right]$$
$$M = \frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$$

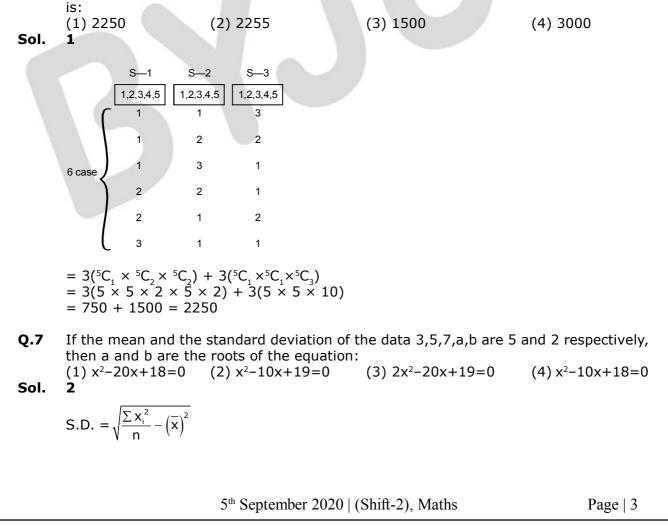
Q.5 If the sum of the first 20 terms of the series $\log_{(7^{1/2})} x + \log_{(7^{1/3})} x + \log_{(7^{1/4})} x + \dots$ is 460, then x is equal to:

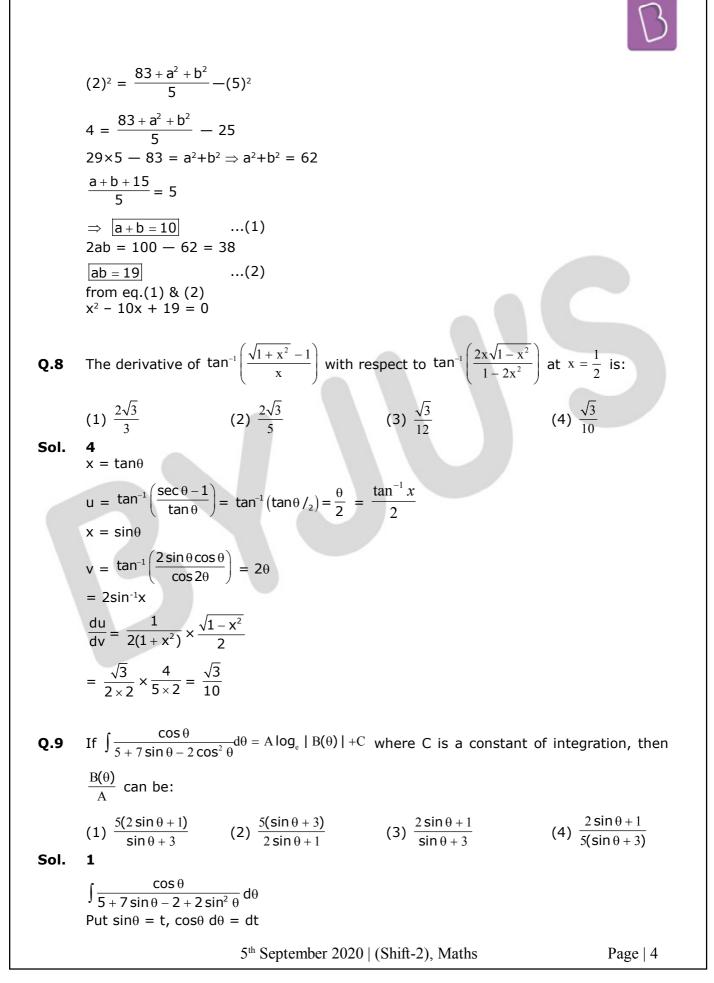
(3) e²

(4) 746/21

Sol. (1)
$$7^{1/2}$$
 (2) 7^2
(2 + 3 + 4 +... + 21) $\log_7 x = 460$
 $\Rightarrow \frac{20 \times (21+2)}{2} \log_7 x = 460$
 $\Rightarrow 230 \log_7 x = 460 \Rightarrow \log_7 x = 2 \Rightarrow x = 7^2$

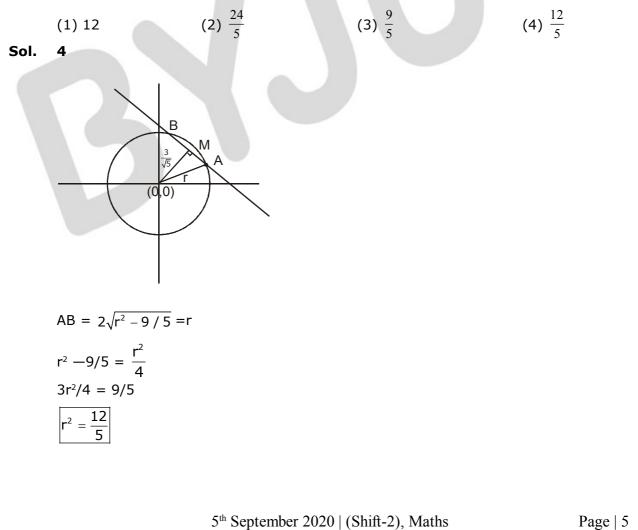
Q.6 There are 3 sections in a question paper and each section contains 5 questions. A candidate has to answer a total of 5 questions, choosing at least one question from each section. Then the number of ways, in which the candidate can choose the questions,

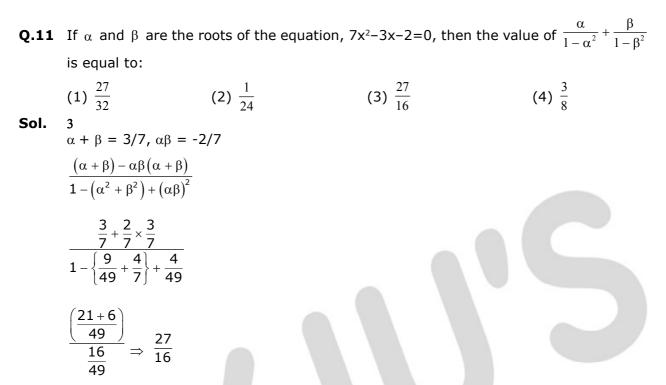




$$\begin{split} &\int \frac{dt}{2t^2 + 7t + 3} \\ &= \frac{1}{2} \int \frac{dt}{t^2 + \frac{7t}{2} + \frac{3}{2}} = \frac{1}{2} \int \frac{dt}{t^2 + \frac{7}{2}t + \left(\frac{7}{4}\right)^2 - \frac{49}{16} + \frac{24}{16}} \\ &= \frac{1}{2} \int \frac{dt}{\left(t + 7/4\right)^2 - \left(5/4\right)^2} \\ &\frac{1}{2} \times \frac{1}{2 \cdot \frac{5}{4}} \ln \left| \left[\frac{t + 7/4 - 5/4}{t + 7/4 + 5/4} \right] \right| \\ &\frac{1}{5} \ln \left| \left(\frac{\sin \theta + 1/2}{\sin \theta + 3} \right) \right| + C \\ &\frac{B(\theta)}{A} = 5 \left(\frac{2\sin \theta + 1}{\sin \theta + 3} \right) \end{split}$$

Q.10 If the length of the chord of the circle, $x^2+y^2 = r^2(r>0)$ along the line, y-2x=3 is r, then r^2 is equal to:





Q.12 If the sum of the second, third and fourth terms of a positive term G.P. is 3 and the sum of its sixth, seventh and eighth terms is 243, then the sum of the first 50 terms of this G.P. is:

$$(1) \frac{2}{13} (3^{50} - 1) \qquad (2) \frac{1}{26} (3^{49} - 1) \qquad (3) \frac{1}{13} (3^{50} - 1) \qquad (4) \frac{1}{26} (3^{50} - 1)$$
Sol. 4
$$\frac{ar + ar^{2} + ar^{3}}{ar^{5} + ar^{6} + ar^{7}} = \frac{3}{243}$$

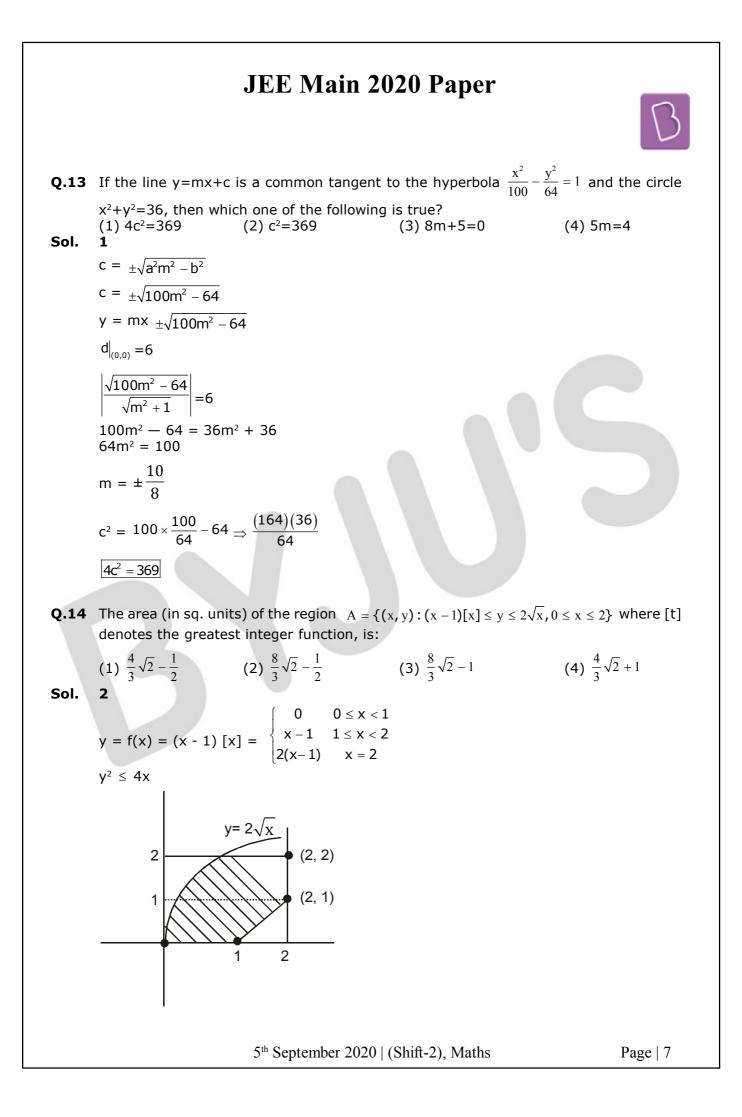
$$\frac{1 + r + r^{2}}{r^{4} (1 + r + r^{2})} = \frac{1}{81}$$

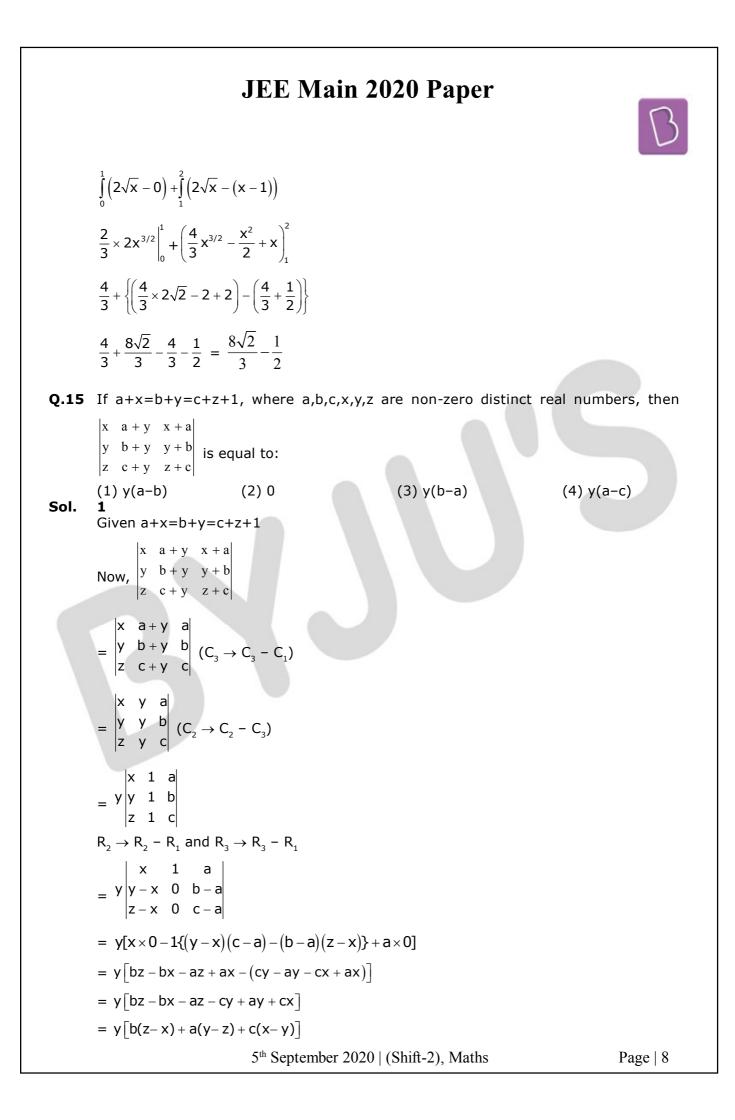
$$\frac{\overline{r = 3}}{a(3 + 9 + 27)} = 3$$

$$a = \frac{3}{39} = \left[\frac{1}{13}\right]$$

$$S_{50} = a\left(\frac{r^{50} - 1}{r - 1}\right)$$

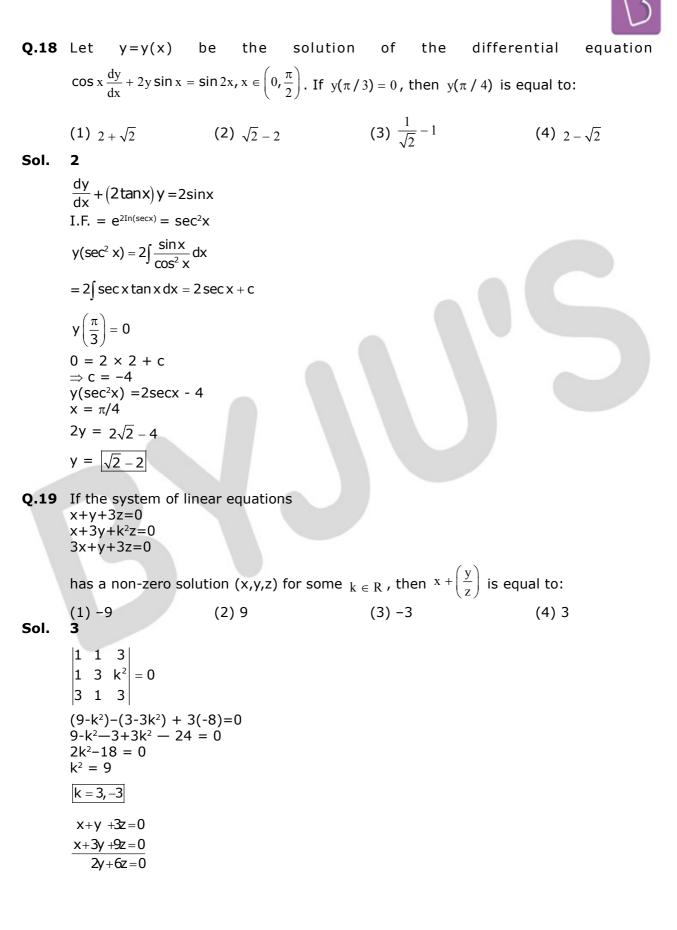
$$= \frac{1}{13} \left\{\frac{3^{50} - 1}{2}\right\}$$





$$= y \left[b \left\{ a - c - 1 \right\} + a \left(c - b + 1 \right) + c \left(b - a \right) \right]$$
$$= y \left[ab - bc - b + ac - ab + a + bc - ac \right]$$
$$= \left[y \left(a - b \right) \right]$$

Q.16 If for some $\alpha \in \mathbb{R}$, the lines $L_1: \frac{x+1}{2} = \frac{y-2}{-1} = \frac{z-1}{1}$ and $L_2: \frac{x+2}{\alpha} = \frac{y+1}{5-\alpha} = \frac{z+1}{1}$ are coplanar, then the line L_2 passes through the point: (2) (10, -2, -2) (3) (10, 2, 2) (4) (-2, 10, 2) (1) (2, -10, -2) Sol. 1 A (-1,2,1), B(-2,-1, -1) $\begin{bmatrix} \overrightarrow{AB} & \overrightarrow{b_1} & \overrightarrow{b_2} \end{bmatrix} = 0$ $\begin{vmatrix} -1 & -3 & -2 \\ 2 & -1 & 1 \end{vmatrix} = 0$ α 5 - α 1 $-1(-1+\alpha-5) + 3(2-\alpha)-2(10-2\alpha+\alpha)=0$ $6-\alpha + 6-3\alpha + 2\alpha - 20 = 0$ $-8 - 2\alpha = 0$ $\alpha = -4$ $L_2: \frac{x+2}{-4} = \frac{y+1}{9} = \frac{z+1}{1}$ any point on L, is (-4λ-2, 9λ-1, λ-1) **Q.17** The value of $\left(\frac{-1+i\sqrt{3}}{1-i}\right)^{30}$ (1) 2¹⁵i **3** (2) -215 (3) -2¹⁵i (4) 6⁵ Sol. $\left(\frac{-1+i\sqrt{3}}{1-i}\right)^{30} \Rightarrow \left[\left(\frac{-1+i\sqrt{3}}{2}\right)\left(1+i\right)\right]^{30}$ $\omega^{30} (1+i)^{30} = 2^{15} (-i)$



y = -3z y / z = -3 2x = 0 x = 0 $x + \left(\frac{y}{z}\right) = -3$

Q.20 Which of the following points lies on the tangent to the curve $x^4e^y + 2\sqrt{y+1} = 3$ at the point (1,0)? (1) (2,6) (2) (2,2) (3) (-2,6) (4) (-2,4)

Sol. 3 (1) (2,6) (2) (2,2) (3) (-2,6) (4) (-2,4) $4x^{3}e^{y} + x^{4}e^{y}y' + \frac{2y'}{2\sqrt{y+1}} = 0$ at (1,0) $4 + y' + \frac{2y'}{2} = 0$ $2y' = -4 \Rightarrow y' = -2$ E.O.T. : y = -2(x-1) 2x + y = 2Q.21 Let A={a,b,c} and B={1,2,3,4}. Then the number of elements in the set C = {f : A \rightarrow B | 2 \in f(A) and f is not one-one} is_____ Sol. 19 Sol. 19

 $C = \{f : A \rightarrow B | 2 \in f(A) \text{ and } f \text{ is not one-one} \}$ Case-I: If $f(x) = 2 \forall x \in A$ then number of function = 1
Case-II: If f(x) = 2 for exactly two elements then total number of many-one function $= {}^{3}C_{2} {}^{3}C_{1} = 9$ Case-III: If f(x) = 2 for exactly one element then total number of many-one functions

$$= {}^{3}C_{1} {}^{3}C_{1} = 9$$

Total = 19

