JEE Main 2020 Paper

Date of Exam: 7 ${ }^{\text {th }}$ January 2020 (Shift 1)

Time: 9:30 A.M. to 12:30 P.M.
Subject: Mathematics

1. The area of the region, enclosed by the circle $x^{2}+y^{2}=2$ which is not common to the region bounded by the parabola $y^{2}=x$ and the straight line $y=x$, is
a. $\frac{1}{3}(12 \pi-1)$
b. $\frac{1}{6}(12 \pi-1)$
c. $\frac{1}{3}(6 \pi-1)$
d. $\frac{1}{6}(24 \pi-1)$

Answer: (b)
Solution:
Required area = area of the circle - area bounded by given line and parabola

Required area $=\pi r^{2}-\int_{0}^{1}\left(y-y^{2}\right) d y$
Area $=2 \pi-\left(\frac{y^{2}}{2}-\frac{y^{3}}{3}\right)_{0}^{1}=2 \pi-\frac{1}{6}=\frac{1}{6}(12 \pi-1)$ sq. units
2. Total number of six-digit numbers in which only and all the five digits $1,3,5,7$ and 9 appear, is
a. 5^{6}
b. $\frac{1}{2}(6!)$
c. 6 !
d. $\frac{5}{2}(6!)$

Answer: (d)

Solution:

Selecting all 5 digits $={ }^{5} C_{5}=1$ way
Now, we need to select one more digit to make it a 6 digit number $={ }^{5} C_{1}=5$ ways

JEE Main 2020 Paper

Total number of permutations $=\frac{6!}{2!}$
Total numbers $={ }^{5} C_{5} \times{ }^{5} C_{1} \times \frac{6!}{2!}=\frac{5}{2}(6!)$
3. An unbiased coin is tossed 5 times. Suppose that a variable X is assigned the value k when k consecutive heads are obtained for $k=3,4,5$, otherwise X takes the value -1 . The expected value of X, is
a. $\frac{1}{8}$
b. $\frac{3}{16}$
c. $-\frac{1}{8}$
d. $-\frac{3}{16}$

Answer: (a)

Solution:

$k=$ no. of consecutive heads
$P(k=3)=\frac{5}{32}$ (HHHTH, HHHTT, THHHT, HTHHH, TTHHH)
$P(k=4)=\frac{2}{32} \quad(\mathrm{HHHHT}, \mathrm{HHHHT})$
$P(k=5)=\frac{1}{32}$ (HHHHH)
$P(\overline{3} \cap \overline{4} \cap \overline{5})=1-\left(\frac{5}{32}+\frac{2}{32}+\frac{1}{32}\right)=\frac{24}{32}$
$\sum X P(X)=\left(-1 \times \frac{24}{32}\right)+\left(3 \times \frac{5}{32}\right)+\left(4 \times \frac{2}{32}\right)+\left(5 \times \frac{1}{32}\right)=\frac{1}{8}$
4. If $\operatorname{Re}\left(\frac{z-1}{2 z+i}\right)=1$, where $z=x+i y$, then the point (x, y) lies on a
a. circle whose centre is at $\left(-\frac{1}{2},-\frac{3}{2}\right)$.
b. straight line whose slope is $\frac{3}{2}$.
c. circle whose diameter is $\frac{\sqrt{5}}{2}$.
d. straight line whose slope is $-\frac{2}{3}$.

Answer: (c)

Solution:

$z=x+i y$
$\frac{x+i y-1}{2 x+2 i y+i}=\frac{(x-1)+i y}{2 x+i(2 y+1)}\left(\frac{2 x-i(2 y+1)}{2 x-i(2 y+1)}\right)$
$\frac{2 x(x-1)+y(2 y+1)}{4 x^{2}+(2 y+1)^{2}}=1$
$2 x^{2}+2 y^{2}-2 x+y=4 x^{2}+4 y^{2}+4 y+1$

JEE Main 2020 Paper

$x^{2}+y^{2}+x+\frac{3}{2} y+\frac{1}{2}=0$
Circle's centre will be $\left(-\frac{1}{2},-\frac{3}{4}\right)$
Radius $=\sqrt{\frac{1}{4}+\frac{9}{16}-\frac{1}{2}}=\frac{\sqrt{5}}{4}$
Diameter $=\frac{\sqrt{5}}{2}$
5. If $f(a+b+1-x)=f(x) \forall x$, where a and b are fixed positive real numbers, then $\frac{1}{(a+b)} \int_{a}^{b} x(f(x)+f(x+1)) d x$ is equal to
a. $\int_{a-1}^{b-1} f(x) d x$
b. $\int_{a+1}^{b+1} f(x+1) d x$
c. $\int_{a-1}^{b-1} f(x+1) d x$
d. $\int_{a+1}^{b+1} f(x) d x$

Answer: (c)

Solution:

$f(a+b+1-x)=f(x)$
$f(a+b-x)=f(x+1)$
$I=\frac{1}{a+b} \int_{a}^{b} x(f(x)+f(x+1)) d x$
From (1) and (2)
$I=\frac{1}{a+b} \int_{a}^{b}(a+b-x)(f(x+1)+f(x)) d x$
Adding (3) and (4)
$2 I=\int_{a}^{b}(f(x)+f(x+1)) d x$
$2 I=\int_{a}^{b} f(x+1) d x+\int_{a}^{b} f(x) d x$
$2 I=\int_{a}^{b} f(a+b-x+1) d x+\int_{a}^{b} f(x) d x$
$2 I=2 \int_{a}^{b} f(x) d x$
$I=\int_{a}^{b} f(x) d x \quad ; \quad x=t+1, d x=d t$
$I=\int_{a-1}^{b-1} f(t+1) d t$
$I=\int_{a-1}^{b-1} f(x+1) d x$

JEE Main 2020 Paper

6. If the distance between the foci of an ellipse is 6 and the distance between its directrices is 12 , then the length of its latus rectum is
a. $2 \sqrt{3}$
b. $\sqrt{3}$
c. $\frac{3}{\sqrt{2}}$
d. $3 \sqrt{2}$

Answer: (d)

Solution:

Let the equation of ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$
Now $2 a e=6 \& \frac{2 a}{e}=12$
$\Rightarrow a e=3 \& \frac{a}{e}=6$
$\Rightarrow a^{2}=18$
$\Rightarrow a^{2} e^{2}=c^{2}=a^{2}-b^{2}=9$
$\Rightarrow b^{2}=9$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{\sqrt{18}}=3 \sqrt{2}$
7. The logical statement $(p \Rightarrow q) \wedge(q \Rightarrow \sim p)$ is equivalent to
a. $\sim p$
b. p
c. $\quad q$
d. $\sim q$

Answer: (a)

Solution:

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \Rightarrow \boldsymbol{q}$	$\sim \boldsymbol{p}$	$\boldsymbol{q} \Rightarrow \sim \boldsymbol{p}$	$(\boldsymbol{p} \Rightarrow \boldsymbol{q}) \wedge(\boldsymbol{q} \Rightarrow \sim \boldsymbol{p})$
T	T	T	F	F	F
T	F	F	F	T	F
F	T	T	T	T	T
F	F	T	T	T	T

Clearly $(p \Rightarrow q) \wedge(q \Rightarrow \sim p)$ is equivalent to $\sim p$
8. The greatest positive integer k, for which $49^{k}+1$ is a factor of the sum $49^{125}+49^{124}+\cdots+$ $49^{2}+49+1$, is
a. 32
b. 60
c. 65
d. 63

Answer: (d)

Solution:

JEE Main 2020 Paper

$1+49+49^{2}+\cdots+49^{125}=\frac{49^{126}-1}{49-1}$
$=\frac{\left(49^{63}+1\right)\left(49^{63}-1\right)}{48}$
$=\frac{\left(49^{63}+1\right)\left((1+48)^{63}-1\right)}{48}$
$=\frac{\left(49^{63}+1\right)(1+48 I-1)}{48} ;$ where I is an integer
$=\left(49^{63}+1\right) I$
Greatest positive integer is $k=63$
9. A vector $\vec{a}=\alpha \hat{\imath}+2 \hat{\jmath}+\beta \hat{k}(\alpha, \beta \in \boldsymbol{R})$ lies in the plane of the vectors, $\vec{b}=\hat{\imath}+\hat{\jmath}$ and $\vec{c}=\hat{\imath}-\hat{\jmath}+4 \hat{k}$. If \vec{a} bisects the angle between \vec{b} and \vec{c}, then
a. $\vec{a} . \hat{\imath}+3=0$
b. $\vec{a} \cdot \hat{k}+4=0$
c. $\vec{a} . \hat{\imath}+1=0$
d. $\vec{a} \cdot \hat{k}+2=0$

Answer: (BONUS)

Solution:

The angle bisector of vectors \vec{b} and \vec{c} is given by:
$\vec{a}=\lambda(\hat{b}+\hat{c})=\lambda\left(\frac{\hat{\imath}+\hat{\jmath}}{\sqrt{2}}+\frac{\hat{\imath}-\hat{\jmath}+4 \hat{k}}{3 \sqrt{2}}\right)=\lambda\left(\frac{4 \hat{\imath}+2 \hat{\jmath}+4 \hat{k}}{3 \sqrt{2}}\right)$
Comparing with $\vec{a}=\alpha \hat{\imath}+2 \hat{\jmath}+\beta \hat{k}$, we get
$\frac{2 \lambda}{3 \sqrt{2}}=2 \Rightarrow \lambda=3 \sqrt{2}$
$\therefore \vec{a}=4 \hat{\imath}+2 \hat{\jmath}+4 \hat{k}$
None of the options satisfy.
10. If $y(\alpha)=\sqrt{2\left(\frac{\tan \alpha+\cot \alpha}{1+\tan ^{2} \alpha}\right)+\frac{1}{\sin ^{2} \alpha}}$ where $\alpha \in\left(\frac{3 \pi}{4}, \pi\right)$, then $\frac{d y}{d \alpha}$ at $\alpha=\frac{5 \pi}{6}$ is
a. $-\frac{1}{4}$
b. $\frac{4}{3}$
c. 4
d. -4

Answer: (c)
Solution:
$y(\alpha)=\sqrt{2\left(\frac{\tan \alpha+\cot \alpha}{1+\tan ^{2} \alpha}\right)+\frac{1}{\sin ^{2} \alpha}}$

JEE Main 2020 Paper

$$
\begin{aligned}
& y(\alpha)=\sqrt{2 \frac{1}{\sin \alpha \cos \alpha \times \frac{1}{\cos ^{2} \alpha}}+\frac{1}{\sin ^{2} \alpha}} \\
& y(\alpha)=\sqrt{2 \cot \alpha+\operatorname{cosec}^{2} \alpha} \\
& y(\alpha)=\sqrt{(1+\cot \alpha)^{2}} \\
& y(\alpha)=-1-\cot \alpha \\
& \frac{d y}{d \alpha}=0+\left.\operatorname{cosec}^{2} \alpha\right|_{\alpha=\frac{5 \pi}{6}} \\
& \frac{d y}{d \alpha}=\operatorname{cosec}^{2} \frac{5 \pi}{6} \\
& \frac{d y}{d \alpha}=4
\end{aligned}
$$

11. If $y=m x+4$ is a tangent to both the parabolas, $y^{2}=4 x$ and $x^{2}=2 b y$, then b is equal to
a. -64
b. 128
c. -128
d. -32

Answer: (c)

Solution:
Any tangent to the parabola $y^{2}=4 x$ is $y=m x+\frac{a}{m}$
Comparing it with $y=m x+4$, we get $\frac{1}{m}=4 \Rightarrow m=\frac{1}{4}$
Equation of tangent becomes $y=\frac{x}{4}+4$
$y=\frac{x}{4}+4$ is a tangent to $x^{2}=2 b y$
$\Rightarrow x^{2}=2 b\left(\frac{x}{4}+4\right)$
Or $2 x^{2}-b x-16 b=0$,
$D=0$
$b^{2}+128 b=0$,
$\Rightarrow b=0$ (not possible),
$\Rightarrow b=-128$
12. Let α be a root of the equation $x^{2}+x+1=0$ and the matrix $A=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha^{4}\end{array}\right]$, then the matrix A^{31} is equal to
a. A
b. A^{2}
c. A^{3}
d. I_{3}

Answer: (c)

Solution:

The roots of equation $x^{2}+x+1=0$ are complex cube roots of unity.

JEE Main 2020 Paper

$\therefore \alpha=\omega$ or ω^{2}
$A=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha^{4}\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right]$
$A^{2}=\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right]\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right]$
$A^{2}=\frac{1}{3}\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 3 & 0\end{array}\right]$
$A^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$A^{4}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$A^{4}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I$
$A^{4}=I$
$A^{28}=I$
Therefore, we get
$A^{31}=A^{28} A^{3}$
$A^{31}=I A^{3}$
$A^{31}=A^{3}$
13. If $g(x)=x^{2}+x-1$ and $(g \circ f)(x)=4 x^{2}-10 x+5$, then $f\left(\frac{5}{4}\right)$ is equal to
a. $-\frac{3}{2}$
b. $-\frac{1}{2}$
C. $\frac{1}{2}$
d. $\frac{3}{2}$

Answer: (b)

Solution:

$g(x)=x^{2}+x-1$
$g o f(x)=4 x^{2}-10 x+5$
$g(f(x))=4 x^{2}-10 x+5$
$f^{2}(x)+f(x)-1=4 x^{2}-10 x+5$
Putting $x=\frac{5}{4} \& f\left(\frac{5}{4}\right)=t$
$t^{2}+t+\frac{1}{4}=0$
$t=-\frac{1}{2}$ or $f\left(\frac{5}{4}\right)=-\frac{1}{2}$

JEE Main 2020 Paper

14. Let α and β are two real roots of the equation $(k+1) \tan ^{2} x-\sqrt{2} \lambda \tan x=1-k$, where $(k \neq-1)$ and λ are real numbers. If $\tan ^{2}(\alpha+\beta)=50$, then value of λ is
a. $5 \sqrt{2}$
b. $10 \sqrt{2}$
c. 10
d. 5

Answer: (c)

Solution:

$(k+1) \tan ^{2} x-\sqrt{2} \lambda \tan x=1-k$
$\tan ^{2}(\alpha+\beta)=50$
$\because \tan \alpha$ and $\tan \beta$ are the roots of the given equation.
Now,
$\tan \alpha+\tan \beta=\frac{\sqrt{2} \lambda}{k+1}, \quad \tan \alpha \tan \beta=\frac{k-1}{k+1}$
$\Rightarrow\left(\frac{\frac{\sqrt{2} \lambda}{k+1}}{1-\frac{k-1}{k+1}}\right)^{2}=50$
$\Rightarrow \frac{2 \lambda^{2}}{4}=50$
$\Rightarrow \lambda^{2}=100$
$\Rightarrow \lambda= \pm 10$
15. Let P be a plane passing through the points $(2,1,0),(4,1,1)$ and $(5,0,1)$ and R be any point $(2,1,6)$. Then the image of R in the plane P is:
a. $(6,5,2)$
b. $(6,5,-2)$
c. $(4,3,2)$
d. $(3,4,-2)$

Answer: (b)

Solution:

Points $A(2,1,0), B(4,1,1) C(5,0,1)$
$\overrightarrow{A B}=(2,0,1)$
$\overrightarrow{A C}=(3,-1,1)$
$\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}=(1,1,-2)$
Equation of the plane is $x+y-2 z=3 \ldots$ (1)
Let the image of point $(2,1,6)$ is (l, m, n)
$\frac{l-2}{1}=\frac{m-1}{1}=\frac{n-6}{-2}=\frac{-2(-12)}{6}=4$
$\Rightarrow l=6, m=5, n=-2$
Hence the image of R in the plane P is $(6,5,-2)$

JEE Main 2020 Paper

16. Let $x^{k}+y^{k}=a^{k},(a, k>0)$ and $\frac{d y}{d x}+\left(\frac{y}{x}\right)^{\frac{1}{3}}=0$, then k is
a. $\frac{1}{3}$
b. $\frac{3}{2}$
c. $\frac{2}{3}$
d. $\frac{4}{3}$

Answer: (c)

Solution:

$x^{k}+y^{k}=a^{k}$
$k x^{k-1}+k y^{k-1} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=-\left(\frac{x}{y}\right)^{k-1}$
$\Rightarrow \frac{d y}{d x}+\left(\frac{y}{x}\right)^{1-k}=0$
$\Rightarrow 1-k=\frac{1}{3}$
$\Rightarrow k=\frac{2}{3}$
17. Let the function, $f:[-7,0] \rightarrow \mathbf{R}$ be continuous on $[-7,0]$ and differentiable on $(-7,0)$. If $f(-7)=$ -3 and $f^{\prime}(x) \leq 2$, for all $x \in(-7,0)$, then for all such functions $f, f(-1)+f(0)$ lies in the interval:
a. $[-6,20]$
b. $(-\infty, 20]$
c. $(-\infty, 11]$
d. $[-3,11]$

Answer: (b)

Solution:

$f(-7)=-3$ and $f^{\prime}(x) \leq 2$
Applying LMVT in [$-7,0$], we get
$\frac{f(-7)-f(0)}{-7}=f^{\prime}(c) \leq 2$
$\frac{-3-f(0)}{-7} \leq 2$
$f(0)+3 \leq 14$
$f(0) \leq 11$
Applying LMVT in $[-7,-1]$, we get
$\frac{f(-7)-f(-1)}{-7+1}=f^{\prime}(c) \leq 2$
$\frac{-3-f(-1)}{-6} \leq 2$

JEE Main 2020 Paper

$f(-1)+3 \leq 12$
$f(-1) \leq 9$
Therefore, $f(-1)+f(0) \leq 20$
18. If $y=y(x)$ is the solution of the differential equation, $e^{y}\left(\frac{d y}{d x}-1\right)=e^{x}$ such that $y(0)=0$, then $y(1)$ is equal to
a. $\log _{e} 2$
b. $2 e$
c. $2+\log _{e} 2$
d. $1+\log _{e} 2$

Answer: (d)
Solution:
$e^{y}\left(y^{\prime}-1\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=e^{x-y}+1$
Let $x-y=t$

$$
1-\frac{d y}{d x}=\frac{d t}{d x}
$$

So, we can write
$\Rightarrow 1-\frac{d t}{d x}=e^{t}+1$
$\Rightarrow-e^{-t} d t=d x$
$\Rightarrow e^{-t}=x+c$
$\Rightarrow e^{y-x}=x+c$
$1=0+c$
$\Rightarrow e^{y-x}=x+1$
at $x=1$
$\Rightarrow e^{y-1}=2$
$\Rightarrow y=1+\log _{2} 2$
19. Five numbers are in A.P., whose sum is 25 and product is 2520 . If one of these five numbers is $-\frac{1}{2}$, then the greatest number amongst them is
a. 16
b. 27
c. 7
d. $\frac{21}{2}$

Answer: (a)

Solution:

Let 5 numbers be $a-2 d, a-d, a, a+d, a+2 d$
$5 a=25$
$a=5$
$(a-2 d)(a-d) a(a+d)(a+2 d)=2520$
$\left(25-4 d^{2}\right)\left(25-d^{2}\right)=504$
$4 d^{4}-125 d^{2}+121=0$

JEE Main 2020 Paper

$4 d^{4}-4 d^{2}-121 d^{2}+121=0$
$d^{2}=1$ or $d^{2}=\frac{121}{4}$
$d= \pm \frac{11}{2}$
For $d=\frac{11}{2}, a+2 d$ is the greatest term, $a+2 d=5+11=16$
20. If the system of linear equations
$2 x+2 a y+a z=0$
$2 x+3 b y+b z=0$
$2 x+4 c y+c z=0$,
where $a, b, c \in \mathbf{R}$ are non-zero and distinct; has non-zero solution, then
a. $\quad a+b+c=0$
b. $\quad a, b, c$ are in A.P.
c. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
d. a, b, c are in G.P.

Answer: (c)

Solution:

$\left|\begin{array}{lll}2 & 2 a & a \\ 2 & 3 b & b \\ 2 & 4 c & c\end{array}\right|=0$
$R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow\left|\begin{array}{ccc}2 & 2 a & a \\ 0 & 3 b-2 a & b-a \\ 0 & 4 c-2 a & c-a\end{array}\right|=0$
$\Rightarrow(3 b-2 a)(c-a)-(4 c-2 a)(b-a)=0$
$\Rightarrow 3 b c-2 a c-3 a b+2 a^{2}-\left[4 b c-4 a c-2 a b+2 a^{2}\right]=0$
$\Rightarrow-b c+2 a c-a b=0$
$\Rightarrow a b+b c=2 a c$
$\Rightarrow \frac{1}{c}+\frac{1}{a}=\frac{2}{b}$
21. $\lim _{x \rightarrow 2} \frac{3^{x}+3^{3-x}-12}{3^{\frac{-x}{2}}-3^{1-x}}$ is equal to \qquad

Answer: (36)

Solution:

$\lim _{x \rightarrow 2} \frac{3^{x}+\frac{27}{3^{x}}-12}{\frac{1}{3^{\frac{x}{2}}}-\frac{3}{3^{x}}}$

JEE Main 2020 Paper

Put $3^{\frac{x}{2}}=t$
$\lim _{t \rightarrow 3} \frac{t^{2}+\frac{27}{t^{2}}-12}{-\frac{3}{t^{2}}+\frac{1}{t}}=\lim _{t \rightarrow 3} \frac{\left(t^{2}-9\right)\left(t^{2}-3\right)}{(t-3)}=\lim _{t \rightarrow 3}\left(t^{2}-3\right)(t+3)=36$
22. If variance of first n natural numbers is 10 and variance of first m even natural numbers is $16, m+$ n is equal to \qquad _.

Answer: (18)

Solution:

For n natural number variance is given by
$\sigma^{2}=\frac{\sum x_{i}^{2}}{n}-\left(\frac{\sum x_{i}}{n}\right)^{2}$
$\frac{\sum x_{i}{ }^{2}}{n}=\frac{1^{2}+2^{2}+3^{2}+\ldots . n \text { term }}{n}=\frac{n(n+1)(2 n+1)}{6 n}$
$\frac{\sum x_{i}}{n}=\frac{1+2+3+\ldots . n \text { terms }}{n}=\frac{n(n+1)}{2 n}$
$\sigma^{2}=\frac{n^{2}-1}{12}=10$ (given)
$\Rightarrow n=11$
Variance of $(2,4,6 \ldots)=4 \times$ variance of $(1,2,3,4 \ldots)=4 \times \frac{m^{2}-1}{12}=\frac{m^{2}-1}{3}=16$ (given)
$\Rightarrow m=7$
Therefore, $n+m=11+7=18$
23. If the sum of the coefficients of all even powers of x in the product $\left(1+x+x^{2}+x^{3} \ldots .+x^{2 n}\right)\left(1-x+x^{2}-x^{3} \ldots .+x^{2 n}\right)$ is 61 , then n is equal to \qquad

Answer: (30)

Solution:

Let $\left(1+x+x^{2}+\cdots+x^{2 n}\right)\left(1-x+x^{2}-\cdots+x^{2 n}\right)=a_{o}+a_{1} x+a_{2} x^{2}+\cdots$
Put $x=1$
$2 n+1=a_{o}+a_{1}+a_{2}+a_{3}+\ldots \ldots . .$.
Put $x=-1$
$2 n+1=a_{o}-a_{1}+a_{2}-a_{3}+\ldots$.
Add (1) and (2)
$2(2 n+1)=2\left(a_{o}+a_{2}+a_{4}+\ldots . . .\right.$.
$2 n+1=61$
$n=30$

JEE Main 2020 Paper

24. Let S be the set of points where the function, $f(x)=|2-|x-3||, x \in \mathbf{R}$, is not differentiable. Then, the value of $\sum_{x \in \mathrm{~S}} f(f(x))$ is equal to \qquad .

Answer: (3)
Solution:

There will be three points $x=1,3,5$ at which $f(x)$ is non-differentiable.
So $f(f(1))+f(f(3))+f(f(5))$
$=f(0)+f(2)+f(0)$
$=1+1+1$
$=3$
25. Let $A(1,0), B(6,2), C\left(\frac{3}{2}, 6\right)$ be the vertices of a triangle $A B C$. If P is a point inside the triangle $A B C$ such that the triangles $A P C, A P B$ and $B P C$ have equal areas, then the length of the line the segment $P Q$, where Q is the point $\left(-\frac{7}{6},-\frac{1}{3}\right)$, is \qquad
Answer: (5)
Solution:
P is the centroid which is $\equiv\left(\frac{1+6+\frac{3}{2}}{3}, \frac{1+5+2}{3}\right)$
$P=\left(\frac{17}{6}, \frac{8}{3}\right)$
$Q=\left(-\frac{7}{6},-\frac{1}{3}\right)$
$P Q=\sqrt{(4)^{2}+(3)^{2}}=5$

