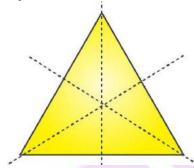
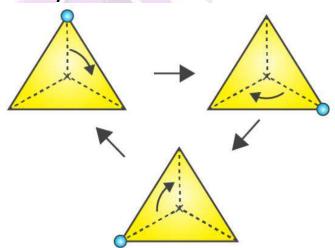


EXERCISE 14.3 PAGE: 275

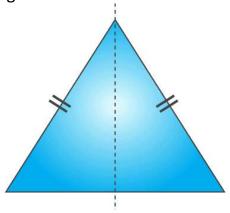

1. Name any two figures that have both line symmetry and rotational symmetry. Solution:-

Equilateral triangle and Circle.


- 2. Draw, wherever possible, a rough sketch of
- (i) a triangle with both line and rotational symmetries of order more than 1. Solution:-

A triangle with both line and rotational symmetries of order more than 1 is an equilateral triangle.

Rotational symmetry

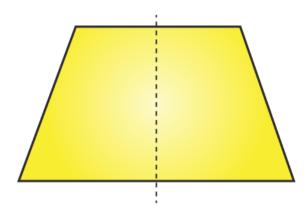


(ii) a triangle with only line symmetry and no rotational symmetry of order more than 1.

Solution:-

A triangle with only line symmetry and no rotational symmetry of order more than 1 is isosceles triangle.

(iii) a quadrilateral with a rotational symmetry of order more than 1 but not a line symmetry.


Solution:-

A quadrilateral with a rotational symmetry of order more than 1 but not a line symmetry is not possible to draw. Because, a quadrilateral with a line symmetry may have rotational symmetry of order one but not more than one.

(iv) a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

Solution:-

A quadrilateral with line symmetry but not a rotational symmetry of order more than 1 is rhombus.

3. If a figure has two or more lines of symmetry, should it have rotational symmetry of order more than 1?

Solution:-

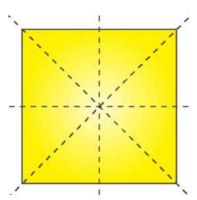
Yes. If a figure has two or more lines of symmetry, then it will have rotational symmetry of order more than 1.

4. Fill in the blanks:

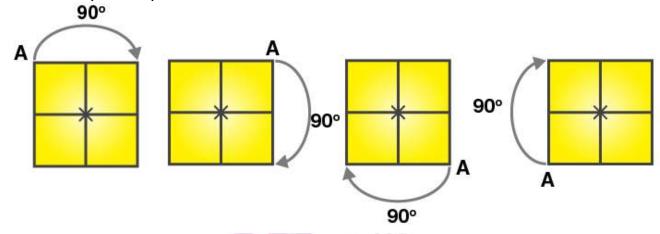
Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square			
Rectangle			
Rhombus			
Equilateral Triangle			7
Regular Hexagon			26
Circle			7/4
Semi-circle		-0	

Solution:-

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square	Intersecting point of diagonals	4	90°
Rectangle	Intersecting point of diagonals	2	180°
Rhombus	Intersecting point of diagonals	2	180°
Equilateral	Intersecting point of medians	3	120°
Triangle			
Regular	Intersecting point of diagonals	6	60°
Hexagon			
Circle	Centre	Infinite	Every angle
Semi-circle	Mid-point of diameter	1	360°


5. Name the quadrilaterals which have both line and rotational symmetry of order more than 1.

Solution:-


The quadrilateral which have both line and rotational symmetry of order more than 1 is square.

Line symmetry:

Rotational symmetry:

6. After rotating by 60° about a centre, a figure looks exactly the same as its original position. At what other angles will this happen for the figure? Solution:-

The other angles are, 120°, 180°, 240°, 300°, 360°

So, the figure is said to have rotational symmetry about same angle as the first one. Hence, the figure will look exactly the same when rotated by 60° from the last position.

7. Can we have a rotational symmetry of order more than 1 whose angle of rotation is (i) 45°?

Solution:-

Yes. We can have a rotational symmetry of order more than 1 whose angle of rotation is 45°.

(ii) 17°?

Solution:-

No. We cannot have a rotational symmetry of order more than 1 whose angle of rotation is 17° .