## Exercise 24.I

1. 

(i) Solution:

Given,
$\vec{a}=\hat{\imath}-2 \hat{\jmath}+\hat{k}$
$\overrightarrow{\mathrm{b}}=4 \hat{\mathrm{i}}-4 \hat{\mathrm{\jmath}}+7 \hat{\mathrm{k}}$
$\vec{a} . \vec{b}=1 \times 4+(-2) \times(-4)+1 \times 7$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=19$
Hence, the dot product is 19 .
(ii) Solution:

Given,
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{\jmath}}+2 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{k}}$
a $\overrightarrow{\mathrm{a}}=0 \times 2+0 \times 2+1 \times 2$
$\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{b}}=2$
Hence, the dot product is 2 .

## (iii) Solution:

Given,

$$
\overrightarrow{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}
$$

$$
\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{\jmath}}-2 \hat{\mathrm{k}}
$$

$$
\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{b}}=0 \times 2+1 \times 3+(-1) \times(-2)
$$

$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=5$
Hence, the dot product is 5 .
2.
(i) Solution:

Given,
$\vec{a}=\widehat{\lambda} \mathrm{l}+2 \hat{\jmath}+\hat{k}$
$\vec{b}=4 \hat{\imath}-9 \hat{\jmath}+2 \hat{k}$
If $\vec{a}$ and $\vec{b}$ are $\perp$ to each other then $\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{b}}=0$
Now
$\vec{a} \cdot \vec{b}=0$
$\lambda(4)+2(-9)+1(2)=0$
$4 \lambda-18+2=0$
$4 \lambda-16=0$
$4 \lambda=16$
$\lambda=16 / 4$
$\therefore \lambda=4$
(ii) Solution:

Given,
$\vec{a}=\widehat{\lambda}+2 \hat{\jmath}+\widehat{k}$
$\vec{b}=5 \hat{i}-9 \hat{\jmath}+2 \hat{k}$
If $\vec{a}$ and $\vec{b}$ are $\perp$ to each other then $\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{b}}=0$
Now,
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0$
$\lambda(5)+2(-9)+1(2)=0$
$5 \lambda-18+2=0$
$5 \lambda-16=0$
$5 \lambda=16$
$\therefore \lambda=16 / 5$
(iii) Solution:

Given,

$$
\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{\imath}}+3 \hat{\mathrm{\jmath}}+4 \hat{\mathrm{k}}
$$

$$
\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{\imath}}+2 \hat{\jmath}-\lambda \hat{\mathrm{k}}
$$

If $\vec{a}$ and $\vec{b}$ are $\perp$ to each other then $\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{b}}=0$

Now,
$\vec{a} \cdot \vec{b}=0$
$2(3)+3(2)+4(-\lambda)=0$
$-4 \lambda+6+6=0$
$-4 \lambda+12=0$
$-4 \lambda=-12$
$\lambda=-12 /-4$
$\therefore \lambda=3$
(iv) Solution:
$\vec{a}=\hat{\lambda} 1+3 \hat{\jmath}+2 \hat{k}$
$\vec{b}=\hat{\imath}-\hat{\jmath}+3 \hat{k}$
If $\vec{a}$ and $\vec{b}$ are $\perp$ to each other then $\vec{a} . \vec{b}=0$
Now,
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0$
$\lambda(1)+3(-1)+2(3)=0$
$\lambda-3+6=0$
$\lambda+3=0$
$\therefore \lambda=-3$

## 3. Solution:

Given,

$$
|\vec{a}|=4,|\vec{b}|=3 \text { and } \vec{a} \cdot \vec{b}=6
$$

We know that,

$$
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}=|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}| \times \cos \theta
$$

So,

$$
\begin{aligned}
& \cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|} \\
& \\
& = \\
& =6 /(1 \times 3) \\
& = \\
& =1 / 12 \\
& \theta=\cos ^{-1}(1 / 2) \\
& \therefore \theta=\pi / 3
\end{aligned}
$$

4. Solution:

$$
\begin{aligned}
& \vec{a}=\hat{\mathrm{a}}-\hat{\mathrm{j}} \\
& \overrightarrow{\mathrm{~b}}=-\hat{\mathrm{j}}+2 \hat{k}
\end{aligned}
$$

So,
$\Rightarrow \overrightarrow{\mathrm{a}}-2 \overrightarrow{\mathrm{~b}}=(\hat{\mathrm{\imath}}-\hat{\jmath})-2(-\hat{\jmath}+2 \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{a}}-2 \overrightarrow{\mathrm{~b}}=\hat{\imath}-\hat{\jmath}+2 \hat{\jmath}-4 \hat{\mathrm{k}}$
$\vec{a}-2 \vec{b}=\hat{\imath}+\hat{\jmath}-4 \hat{k}$
$\Rightarrow \vec{a}+\vec{b}=(\hat{\imath}-\hat{\jmath})+(-\hat{\jmath}+2 \hat{k})$
$\vec{a}+\vec{b}=\hat{\imath}-\hat{\jmath}-\hat{\jmath}+2 \hat{k}$
$\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=\hat{\imath}-2 \hat{\jmath}+2 \hat{k}$
Now,

$$
\begin{aligned}
& (\vec{a}-2 \vec{b}) \cdot(\vec{a}+\vec{b})=(\hat{\imath}+\hat{\jmath}-4 \hat{k})(\hat{\imath}-2 \hat{\jmath}+2 \hat{k}) \\
& (\vec{a}-2 \vec{b}) \cdot(\vec{a}+\vec{b})=1 \times 1+1 \times(-2)+(-4) \times 2 \\
& (\vec{a}-2 \vec{b}) \cdot(\vec{a}+\vec{b})=1-2-8 \\
& (\vec{a}-2 \vec{b}) \cdot(\vec{a}+\vec{b})=-9
\end{aligned}
$$

5. 

(i) Solution:

Given,
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathbf{j}}$
$\vec{b}=\hat{\jmath}+\hat{k}$
We know that,
$\vec{a} \cdot \vec{b}=|\vec{a}| \times|\vec{b}| \times \cos \theta$
So,

$$
\begin{aligned}
& \cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|} \\
& \cos \theta=\frac{(\hat{\mathrm{i}}-\hat{\mathrm{j}})(\hat{\mathrm{j}}+\hat{\mathrm{k}})}{\sqrt{1^{2}+1^{2}} \times \sqrt{1^{2}+1^{2}}} \\
& \cos \theta=\frac{1 \times 0+(-1) \times 1+0 \times 1}{\sqrt{2} \times \sqrt{2}} \\
& \cos \theta=-\frac{1}{2} \\
& \theta=\cos ^{-1}\left(-\frac{1}{2}\right) \\
& \theta=\pi-\frac{\pi}{3} \\
& \therefore \theta=\frac{2 \pi}{3}
\end{aligned}
$$

Therefore, angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ is $\frac{\pi}{3}$.
(ii) Solution:

Given,
$\vec{a}=3 \hat{\imath}-2 \hat{\jmath}-6 \hat{k}$
$\overrightarrow{\mathrm{b}}=4 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+8 \hat{\mathrm{k}}$
We know that,

$$
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}=|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}| \times \cos \theta
$$

So,

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times|\vec{b}|}
$$

$$
\cos \theta=\frac{(3 \hat{\imath}-2 \hat{\jmath}-6 \hat{k})(4 \hat{\imath}-\hat{\jmath}+8 \hat{\mathrm{k}})}{\sqrt{3^{2}+(-2)^{2}+(-6)^{2}} \times \sqrt{4^{2}+(-1)^{2}+8^{2}}}
$$

$$
\begin{aligned}
& \cos \theta=\frac{3 \times 4+(-2) \times(-1)+(-6) \times 8}{\sqrt{9+4+36} \times \sqrt{16+1+64}} \\
& \cos \theta=-\frac{34}{\sqrt{49} \times \sqrt{81}} \\
& \cos \theta=-\frac{34}{7 \times 9} \\
& \theta=\cos ^{-1}\left(-\frac{34}{63}\right) \\
& \theta=122.66^{\circ}
\end{aligned}
$$

Therefore, angle between $\vec{a}$ and $\vec{b}$ is $122.66^{\circ}$.

