Exercise 24.2

1. Solution:

Let $\overrightarrow{0}, \vec{a}$ and \bar{b} be the position vector of the O, A and B.
P and Q are points of trisection of $A B$.
Position vector of point $P=\frac{2 \vec{a}+\vec{b}}{3}$
Position vector of point $Q=\frac{\vec{a}+2 \vec{b}}{3}$
Now,

$$
\begin{aligned}
& \mathrm{OP}=\frac{2 \vec{a}+\vec{b}}{3}-\vec{o}=\frac{2 \vec{a}+\vec{b}-3 \vec{o}}{3}=\frac{2 O A+O B}{3} \\
& \begin{aligned}
& O Q=\frac{\vec{a}+2 \vec{b}}{3}-\vec{o}=\frac{\vec{a}+2 \vec{b}-3 \vec{o}}{3}=\frac{O A+2 O B}{3} \\
& \begin{aligned}
O P^{2}+O Q^{2} & =\left(\frac{2 O A+O B}{3}\right)^{2}+\left(\frac{O A+2 O B}{3}\right)^{2} \\
& =\frac{5\left(O A^{2}+O B^{2}\right)+8(O A)(O B) \operatorname{Oos} 90^{\circ}}{9} \\
& =\frac{5}{9} A B^{2} \ldots \ldots \ldots\left[\because O A^{2}+O B^{2}=A B^{2} \text { and } \cos 90^{\circ}=0\right]
\end{aligned} \\
& \begin{aligned}
\therefore O P^{2}+O Q^{2} & =5 / 9 A B^{2}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

2. Solution:

Let OACB be a quadrilateral such that its diagonal bisect each other at right angles.
We know that, if the diagonals of a quadrilateral bisect each other then it's a parallelogram.
Thus, OACB is a parallelogram
So,
$\mathrm{OA}=\mathrm{BC}$ and $\mathrm{OB}=\mathrm{AC}$
Now,
Taking O as the origin. Let \vec{a} and \vec{b} be the position vector of A and B
AB and OC be the diagonals of quadrilateral which bisect each other at right angles.

$$
\begin{aligned}
\Rightarrow & (\overrightarrow{\mathrm{OC}}) \cdot(\overrightarrow{\mathrm{AB}})=0 \\
& (\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \cdot(\vec{a}-\vec{b})=0 \\
& |a|^{2}+\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{b}-|b|^{2}=0 \\
& |a|^{2}=|b|^{2} \\
& O A=O B
\end{aligned}
$$

Similarly,
$\mathrm{OA}=\mathrm{OB}=\mathrm{BC}=\mathrm{CA}$
Therefore, OACB is a rhombus.

3. Solution:

Let $\triangle \mathrm{AOB}$ be a right-angle triangle with right angle at O .
Required to prove: $\mathrm{AB}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}$
Taking O as the origin, we have

$$
\overrightarrow{\mathrm{a}} \text { and } \overrightarrow{\mathrm{b}} \text { to be the position vector of } \mathrm{A} \text { and } \mathrm{B} \text { respectively. }
$$

Now, as OB is perpendicular to OA their dot product equals to zero So, we have

$$
(\overrightarrow{\mathrm{OA}}) \cdot(\overrightarrow{\mathrm{OB}})=0
$$

$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0 \ldots \ldots$ (i)
And,
$(\overrightarrow{\mathrm{AB}})^{2}=(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}})^{2}$
$\Rightarrow(\overrightarrow{\mathrm{AB}})^{2}=a^{2}+\mathrm{b}^{2}-2 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}$
From equation (i), we have
$\Rightarrow(\overrightarrow{\mathrm{AB}})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-0$
Therefore,
$\mathrm{AB}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}$

- Hence proved

4. Solution:

Let OAC be a right triangle, right angled at O .
Now, taking O as the origin
Let \vec{a} and \vec{b} be the position vector of $\overrightarrow{O A}$ and $\overrightarrow{O B}$.
$\overrightarrow{\mathrm{OA}}$ is perpendicular to $\overrightarrow{\mathrm{OB}}$

$\therefore \overrightarrow{O A} \cdot \overrightarrow{O B}=0$
$\vec{a} \cdot \bar{b}=0$
Now,
$\overrightarrow{\mathrm{AB}}^{2}=(\vec{b}-\vec{a})^{2}=(\vec{a})^{2}+(\vec{b})^{2}-2 \vec{a} \cdot \vec{b}=(\vec{a})^{2}+(\vec{b})^{2}-0=(\overrightarrow{\mathrm{OA}})^{2}+(\overrightarrow{\mathrm{OB}})^{2}$

- Hence proved

5. Solution:

Given, ABCD is a rectangle
Let $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S be the mid points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively.
Now,

$$
\begin{aligned}
& \overline{\mathrm{PQ}}=\overline{\mathrm{PB}}+\overrightarrow{\mathrm{BQ}}=\frac{1}{2}(\overline{\mathrm{AB}}+\overrightarrow{\mathrm{BC}})=\frac{1}{2} \overline{\mathrm{AC}} \ldots \ldots . .(\mathrm{i}) \\
& \overline{\mathrm{SR}}=\overline{\mathrm{SD}}+\overrightarrow{\mathrm{DR}}=\frac{1}{2}(\overline{\mathrm{AD}}+\overline{\mathrm{DC}})=\frac{1}{2} \overrightarrow{\mathrm{AC}} \ldots \ldots . .(\text { ii })
\end{aligned}
$$

From (i) and (ii), we have
$\overline{P Q}=\overline{S R}$ i.e. sides $P Q$ and $S R$ are equal and parallel.
$\therefore \mathrm{PQRS}$ is a parallelogram.
Now,

$$
\begin{equation*}
(P Q)^{2}=\overline{\mathrm{PQ}} \cdot \overline{\mathrm{PQ}}=(\overline{\mathrm{PB}}+\overline{\mathrm{BQ}}) \cdot(\overline{\mathrm{PB}}+\overline{\mathrm{BQ}})=|\mathrm{PB}|^{2}+|\mathrm{BQ}|^{2} \tag{iii}
\end{equation*}
$$

$(P S)^{2}=\overline{P S} \cdot \overline{P S}=(\overline{P A}+\overline{P S}) \cdot(\overline{P A}+\overline{P S})=|P A|^{2}+|A S|^{2}=|P B|^{2}+|B Q|^{2} \ldots \ldots .(i v)$
From (iii) and (iv), we get
$(\mathrm{PQ})^{2}=(\mathrm{PS})^{2}$
$\Rightarrow P Q=P S$
So, the adjacent sides of PQRS are equal
Hence, PQRS is rhombus.

6. Solution:

Let OABC be a rhombus, whose diagonals OB and AC intersect at point D And, let O be the origin
Let the position vector of A and C be \vec{a} and $\overrightarrow{\mathrm{c}}$ respectively then,
$\overrightarrow{O A}=\vec{a}$ and $\overrightarrow{O C}=\vec{c}$
$\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O A}+\overrightarrow{O C}=\vec{a}+\vec{c} \ldots \ldots \ldots \ldots[\because \overrightarrow{A B}=\overrightarrow{O C}]$
Position vector of mid-point of $\overrightarrow{O B}=\frac{1}{2}(\vec{a}+\vec{c})$
Position vector of mid-point of $\overrightarrow{A C}=\frac{1}{2}(\vec{a}+\vec{c})$
\therefore Midpoints of $O B$ and $A C$ coincide.
\therefore Diagonal $O B$ and $A C$ bisect each other.
$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{AC}}=(\vec{a}+\vec{c}) \cdot(\overrightarrow{\mathrm{c}}-\vec{a})=(\overrightarrow{\mathrm{c}}+\vec{a}) \cdot(\overrightarrow{\mathrm{c}}-\vec{a})=|\overrightarrow{\mathrm{c}}|^{2}-|\vec{a}|^{2}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}=0$
$[\because O C$ and $O A$ are sides of the rhombus]
$\Rightarrow \overline{\mathrm{OB}} \perp \overrightarrow{\mathrm{AC}}$

7. Solution:

Let ABCD be a rectangle
Taking A as the origin, we have position vectors of point B and D to be \vec{a} and \vec{b} respectively By parallelogram law,
$\overrightarrow{A C}=\vec{a}+b$ and $\overrightarrow{B D}=\vec{a}-\vec{b}$
As $A B C D$ is a rectangle, $A B \perp A D$
$\Rightarrow \vec{a} \bullet \vec{b}=0$.
Now, diagonals $A C$ and $B D$ are perpendicular iff $\overline{\mathrm{AC}} \cdot \overrightarrow{\mathrm{BD}}=0$

$$
\begin{aligned}
& (\vec{a}+\vec{b})(\vec{a}-\vec{b})=0 \\
& (\vec{a})^{2}-(\vec{b})^{2}=0 \\
& |\overrightarrow{A B}|^{2}=|\overrightarrow{A D}|^{2} \\
\Rightarrow & |A B|=|A D|
\end{aligned}
$$

Hence, ABCD is a square.

