

## EXERCISE 32.2

### Question. 1(i)

#### Solution:

We know that, Mean of any probability distribution =  $\sum x_i p_i$ 

| Xi | p <sub>i</sub> | x <sub>i</sub> p <sub>i</sub> | x <sub>i</sub> <sup>2</sup> p <sub>i</sub>         |
|----|----------------|-------------------------------|----------------------------------------------------|
| 2  | 0.2            | 0.4                           | 0.8                                                |
| 3  | 0.5            | 1.5                           | 4.5                                                |
| 4  | 0.3            | 1.2                           | 4.8                                                |
|    |                | $\sum x_i p_i = 3.1$          | ∑x <sub>i</sub> <sup>2</sup> p <sub>i</sub> = 10.1 |

Then, Variance =  $\sum p_i x_i^2 - (\sum x_i p_i)^2$ = 10.1 - (3.1)<sup>2</sup> = 0.49

Therefore, Standard deviation = vVariance

= v0.49 = 0.7

## Question. 1(ii)

## Solution:

#### We know that, Mean of any probability distribution = $\sum x_i p_i$

| Xi | pi  | x <sub>i</sub> p <sub>i</sub> | xi²pi                      |
|----|-----|-------------------------------|----------------------------|
| 1  | 0.4 | 0.4                           | 0.4                        |
| 3  | 0.1 | 0.3                           | 0.9                        |
| 4  | 0.2 | 0.8                           | 3.2                        |
| 5  | 0.3 | 1.5                           | 7.5                        |
|    |     | $\sum x_i p_i = 3$            | $\sum x_{i}^{2}p_{i} = 12$ |

Then, Variance =  $\sum p_i x_i^2 - (\sum x_i p_i)^2$ = 12 - (3)<sup>2</sup> = 3 Therefore, Standard deviation =  $\sqrt{Variance}$ =  $\sqrt{3}$ = 1.732

Question. 1(iii)

https://byjus.com



### Solution:

We know that, Mean of any probability distribution =  $\sum x_i p_i$ 

| Xi | p <sub>i</sub> | x <sub>i</sub> p <sub>i</sub> | x <sub>i</sub> <sup>2</sup> p <sub>i</sub> |
|----|----------------|-------------------------------|--------------------------------------------|
| -5 | 1⁄4            | -5/4                          | 25/4                                       |
| -4 | 1/8            | -1/2                          | 2                                          |
| 1  | 1/2            | 1/2                           | 1/2                                        |
| 2  | 1/8            | 1⁄4                           | 1/2                                        |
|    |                | $\sum x_i p_i = -1$           | $\sum x_i^2 p_i = 37/4$                    |

Then, Variance =  $\sum p_i x_i^2 - (\sum x_i p_i)^2$ =  $37/4 - (-1)^2$ = 33/4Therefore, Standard deviation =  $\sqrt{Variance}$ 

> = v(33/4) = 2.9

## Question. 1(iv)

#### Solution:

We know that, Mean of any probability distribution =  $\sum x_i p_i$ 

| Xi | pi  | x <sub>i</sub> p <sub>i</sub> | x <sub>i</sub> ²p <sub>i</sub> |
|----|-----|-------------------------------|--------------------------------|
| -1 | 0.3 | -0.3                          | 0.3                            |
| 0  | 0.1 | 0                             | 0                              |
| 1  | 0.1 | 0.1                           | 0.1                            |
| 2  | 0.3 | 0.6                           | 1.2                            |
| 3  | 0.2 | 0.6                           | 1.8                            |
|    |     | $\sum x_i p_i = 1$            | $\sum x_i^2 p_i = 3.4$         |

Then, Variance =  $\sum p_i x_i^2 - (\sum x_i p_i)^2$ = 3.4 - (1)<sup>2</sup> = 2.4 Therefore, Standard deviation =  $\sqrt{Variance}$ 

# Question. 1(v) Solution:

We know that, Mean of any probability distribution =  $\boldsymbol{\Sigma} \boldsymbol{x}_i \boldsymbol{p}_i$ 

https://byjus.com



RD Sharma Solutions for Class 12 Maths Chapter 32 Mean and Variance of a Random Variable

| Xi | p <sub>i</sub> | x <sub>i</sub> p <sub>i</sub> | x <sub>i</sub> <sup>2</sup> p <sub>i</sub> |
|----|----------------|-------------------------------|--------------------------------------------|
| 1  | 0.4            | 0.4                           | 0.4                                        |
| 2  | 0.3            | 0.6                           | 1.2                                        |
| 3  | 0.2            | 0.6                           | 1.8                                        |
| 4  | 0.1            | 0.4                           | 1.6                                        |
|    |                | $\sum x_i p_i = 2$            | $\sum x_i^2 p_i = 5$                       |

Then, Variance =  $\sum p_i x_i^2 - (\sum x_i p_i)^2$ 

$$= 5 - (2)^2$$

Therefore, Standard deviation = VVariance

## Question. 1(vi)

#### Solution:

We know that, Mean of any probability distribution =  $\sum x_i p_i$ 

| Xi | pi  | xipi                                 | xi²pi                  |
|----|-----|--------------------------------------|------------------------|
| 0  | 0.2 | 000                                  | 0                      |
| 1  | 0.5 | 0.5                                  | 0.5                    |
| 3  | 0.2 | 0.6                                  | 1.8                    |
| 5  | 0.1 | 0.4                                  | 2.5                    |
|    |     | ∑x <sub>i</sub> p <sub>i</sub> = 1.6 | $\sum x_i^2 p_i = 4.8$ |

Then, Variance =  $\sum p_i x_i^2 - (\sum x_i p_i)^2$ = 4.8 - (1.6)<sup>2</sup> = 4.8 - 2.56 = 2.24 Therefore, Standard deviation =  $\sqrt{Variance}$ =  $\sqrt{2.24}$ 

## Question. 1(vii) Solution: We know that, Mean of any probability distribution = $\sum x_i p_i$



RD Sharma Solutions for Class 12 Maths Chapter 32 Mean and Variance of a Random Variable

| Xi | p <sub>i</sub> | x <sub>i</sub> p <sub>i</sub> | x <sub>i</sub> <sup>2</sup> p <sub>i</sub> |
|----|----------------|-------------------------------|--------------------------------------------|
| -2 | 0.1            | -0.2                          | 0.4                                        |
| -1 | 0.2            | -0.2                          | 0.2                                        |
| 0  | 0.4            | 0                             | 0                                          |
| 1  | 0.2            | 0.2                           | 0.2                                        |
| 2  | 0.1            | 0.2                           | 0.4                                        |
|    |                | $\sum x_i p_i = 0$            | $\sum x_i^2 p_i = 1.2$                     |

Then, Variance =  $\sum p_i x_i^2 - (\sum x_i p_i)^2$ = 1.2 - (0)<sup>2</sup> = 1.2 - 0 = 1.2 Therefore, Standard deviation =  $\sqrt{Variance}$ =  $\sqrt{1.2}$ = 1.095

#### Question. 1(viii)

#### Solution:

We know that, Mean of any probability distribution =  $\sum x_i p_i$ 

| Xi | pi   | 2 x <sub>i</sub> p <sub>i</sub> | x <sub>i</sub> <sup>2</sup> p <sub>i</sub> |
|----|------|---------------------------------|--------------------------------------------|
| -3 | 0.05 | -0.15                           | 0.45                                       |
| -1 | 0.45 | -0.45                           | 0.45                                       |
| 0  | 0.20 | 0                               | 0                                          |
| 1  | 0.25 | 0.2 5                           | 0.25                                       |
| 3  | 0.05 | 0.15                            | 0.45                                       |
|    |      | $\sum x_i p_i = -0.2$           | $\sum x_i^2 p_i = 1.6$                     |

Then, Variance =  $\sum p_i x_i^2 - (\sum x_i p_i)^2$ = 1.6 - (-0.2)<sup>2</sup> = 1.6 - 0.04 = 1.56 Therefore, Standard deviation =  $\sqrt{Variance}$ =  $\sqrt{1.56}$ = 1.249

https://byjus.com