

EXERCISE 18.3

PAGE NO: 18.16

1. Give the order of rotational symmetry for each of the following figures when rotated about the marked point (x):

Solution:

(i) A figure is said to have rotational symmetry if its fits onto itself more than once during a full turn that is rotation through 360°

Therefore the given figure has its rotational symmetry as 4.

(ii) A figure is said to have rotational symmetry if its fits onto itself more than once during a full turn that is rotation through 360°

Therefore the given figure has its rotational symmetry as 3.

https://byjus.com

(iii) A figure is said to have rotational symmetry if its fits onto itself more than once during a full turn that is rotation through 360°. Therefore the given figure has its rotational symmetry as 3.

(iv) A figure is said to have rotational symmetry if its fits onto itself more than once during a full turn that is rotation through 360°. Therefore the given figure has its rotational symmetry as 4.

(v) A figure is said to have rotational symmetry if its fits onto itself more than once during a full turn that is rotation through 360°. Therefore the given figure has its rotational symmetry as 2.

(vi) A figure is said to have rotational symmetry if its fits onto itself more than once during a full turn that is rotation through 360°. Therefore the given figure has its rotational symmetry as 4.

(vii) A figure is said to have rotational symmetry if its fits onto itself more than once during a full turn that is rotation through 360°. Therefore the given figure has its rotational symmetry as 5.

(viii) A figure is said to have rotational symmetry if its fits onto itself more than once during a full turn that is rotation through 360°. Therefore the given figure has its rotational symmetry as 6.

(ix) A figure is said to have rotational symmetry if its fits onto itself more than once during a full turn that is rotation through 360°. Therefore the given figure has its rotational symmetry as 3.

2. Name any two figures that have both line symmetry and rotational symmetry.

Solution:

An equilateral triangle and a square have both lines of symmetry and rotational symmetry.

3. Give an example of a figure that has a line of symmetry but does not have rotational symmetry.

Solution:

A semicircle and an isosceles triangle have a line of symmetry but do not have rotational symmetry.

4. Give an example of a geometrical figure which has neither a line of symmetry nor a rotational symmetry.

Solution:

A scalene triangle has neither a line of symmetry nor a rotational symmetry.

Scalene triangle

5. Give an example of a letter of the English alphabet which has

- (i) No line of symmetry
- (ii) Rotational symmetry of order 2.

Solution:

(i) The letter of the English alphabet which has no line of symmetry is Z.

(ii) The letter of the English alphabet which has rotational symmetry of order 2 is N.

6. What is the line of symmetry of a semi-circle? Does it have rotational symmetry?

Solution:

A semicircle (half of a circle) has only one line of symmetry. In the figure, there is one line of symmetry. The figure is symmetric along the perpendicular bisector I of the diameter XY. A semi-circle does not have any rotational symmetry.

- 7. Draw, whenever possible, a rough sketch of
- (i) a triangle with both line and rotational symmetries.
- (ii) a triangle with only line symmetry and no rotational symmetry.
- (iii) a quadrilateral with a rotational symmetry but not a line of symmetry.
- (iv) a quadrilateral with line symmetry but not a rotational symmetry.

Solution:

(i) An equilateral triangle has 3 lines of symmetry and a rotational symmetry of order 3.

(ii) An isosceles triangle has only 1 line of symmetry and no rotational symmetry.

(iii) A parallelogram is a quadrilateral which has no line of symmetry but a rotational symmetry of order 2.

(iv) A kite is a quadrilateral which has only one line of symmetry and no rotational symmetry.

8. Fill in the blanks:

Figures	Centre of rotation	Order of rotation	Angle of rotation
Square			
Rectangle			
Rhombus	20	0.0	
Equilateral Triangle			
Regular hexagon 🛁		6	
Circle	1211		
Semi-circle			

Solution:

Figures	Centre of rotation	Order of rotation	Angle of rotation
Square	Point of intersection of the line	4	90°
	segments joining the mid-points of		
	opposite sides.		
Rectangle	Point of intersection of the line	2	180 [°]
	segments joining the mid-points of		
	opposite sides		
Rhombus	Point of intersection of diagonals	2	180 [°]
Equilateral	Point of intersection of angle	3	120 ⁰
Triangle	bisectors i.e., centroid		
Regular	Centre of the hexagon	6	60°

hexagon			
Circle	Centre of the circle	Unlimited	Any angle
Semi-circle	Nil	Nil	Nil

9. Fill in the blanks:

English Alphabet Letter	Line Symmetry	Number of Lines of Symmetry	Rotational symmetry	Order of rotational symmetry
Z	Nil	0	Yes	2
S	-	-	-	-
Н	Yes	-	Yes	-
0	Yes	-	Yes	-
E	Yes	-	-	-
Ν	-	-	Yes	2
С	-	-		-

Solution:

-				
Solution:				
English	Line Symmetry	Number of	Rotational	Order of
Alphabet Letter		Lines of	symmetry	rotational
		Symmetry		symmetry
Z	Nil	0	Yes	2
S	Nil	0	Yes	2
н	Yes	2	Yes	2
0	Yes	4	Yes	2
E	Yes	1	No	0
Ν	Nil	0	Yes	2
С	Yes	1	No	0