EXERCISE 20.2

Question. 1

Solution:

Let us assume that $\mathrm{I}=\int_{2}^{4} \frac{x}{x^{2}+1} d x$
Then, $\int \frac{x}{x^{2}+1} d x=\frac{1}{2} \int \frac{2 x}{x^{2}+1} d x$

$$
1 / 2 \log \left(1+x^{2}\right)=F(x)
$$

We know that, by the second fundamental theorem of calculus, we get
$\mathrm{I}=\mathrm{F}(4)-\mathrm{F}(2)$
$=1 / 2\left[\log \left(1+4^{2}\right)-\log \left(1+2^{2}\right)\right]$
$=1 / 2[\log 17-\log 5]$
We know that, $\log a-\log b=\log (a / b)$
So,

$$
=1 / 2 \log (17 / 5)
$$

Question. 2

Solution:

Let us assume $1+\log x=t$
Then differentiating w.r.t. x, we get
$(1 / x) d x=d t$
Now substitute $x=1$

$$
t=1
$$

Again substitute $x=2$

$$
t=1+\log 2
$$

Then given question becomes,

$$
\begin{aligned}
\int_{1}^{2} \frac{1}{x(1+\log x)^{2}} d x & =\int_{1}^{1+\log 2} \frac{d t}{t^{2}} \\
& =\left[\frac{-1}{t}\right]_{1}^{1+\log 2} \\
& =\left[\frac{-1}{1+\log 2}+1\right]
\end{aligned}
$$

Now applying limits, we get,

$$
\begin{aligned}
& =[(-1+1+\log 2) /(1+\log 2)] \\
& =[\log 2 /(\log e+\log 2)]
\end{aligned}
$$

$$
\ldots \text { [because } \log e=1]
$$

We know that, $\log a+\log b=\log a b$

$$
=\log 2 / \log 2 e
$$

Therefore, $\int_{1}^{2} \frac{1}{x(1+\log x)^{2}} d x=\frac{\log 2}{\log 2 e}$

Question. 3

Solution:

Let us assume that $9 x^{2}-1=t$
Then, differentiating w.r.t. x, we get, $18 \mathrm{xdx}=\mathrm{dt}$
Dividing both side by 6 , we get
$3 x d x=d t / 6$
So, substitute $x=1$

$$
t=8
$$

Again substitute $x=2$

$$
t=35
$$

Then, given question becomes,

$$
\begin{aligned}
\int_{1}^{2} \frac{3 x}{9 x^{2}-1} d x & =\int_{8}^{35} \frac{d t}{6 t} \\
& =\frac{1}{6}[\log t]_{8}^{35}
\end{aligned}
$$

Now applying limits, we get,

$$
=1 / 6(\log 35-\log 8)
$$

We know that, $\log a-\log b=\log (a / b)$
So,

$$
\int_{1}^{2} \frac{3 x}{9 x^{2}-1} d x=1 / 6 \log (35 / 8)
$$

Question. 6

Solution:

Let us assume that, $\mathrm{e}^{\mathrm{x}}=\mathrm{t}$
Then, differentiating w.r.t. x, we get,

$$
e^{x} d x=d t
$$

So, substitute $x=0$

$$
t=1
$$

Again substitute $x=1$

$$
\mathrm{t}=\mathrm{e}
$$

Then, the given question becomes,
$\int_{0}^{1} \frac{e^{x}}{1+e^{2 x}} d x=\int_{1}^{e} \frac{d t}{1+t^{2}}$

$$
=\left[\tan ^{-1} t\right]_{1}^{e}
$$

By applying limits, we get,

$$
=\left[\tan ^{-1} \mathrm{e}-\tan ^{-1} 1\right]
$$

We know that, $\tan \frac{\pi}{4}=1$
Then,

$$
=\tan ^{-1} e-\pi / 4
$$

Therefore, $\int_{0}^{1} \frac{e^{x}}{1+e^{2 x}} d x=\tan ^{-1} e-\frac{\pi}{4}$

Question. 7

Solution:

Let us assume that, $x^{2}=t$
Then, differentiating w.r.t. x, we get,

$$
2 x d x=d t
$$

So, substitute $x=0$

$$
t=0
$$

Again substitute $x=1$

$$
t=1
$$

Then, the given question becomes,

$$
\begin{aligned}
\int_{0}^{1} x e^{x^{2}} d x & =\int_{0}^{1} \frac{e^{t} d t}{2} \\
& =\frac{1}{2} \int_{0}^{1} e^{t} d t \\
& =\frac{1}{2}\left[e^{t}\right]_{0}^{1}
\end{aligned}
$$

By applying limits, we get,

$$
\begin{aligned}
& =1 / 2\left[e^{1}-e^{0}\right] \\
& =1 / 2[e-1]
\end{aligned}
$$

Therefore, $\int_{0}^{1} x e^{x^{2}} d x=\frac{1}{2}(e-1)$

