EXERCISE 20.5

Question. 1

Solution:

From the question it is given that, $\int_{0}^{3}(x+4) d x$
From the formula,
$\int_{a}^{b} f(x) d x=\lim _{h \rightarrow 0} h[f(a)+f(a+h)+f(a+2 h)+\cdots+f(a+(n-1) h)]$
Where, $h=(b-a) / n$
Here, $a=0, b=3$ and $f(x)=(x+4)$
Then, $\mathrm{h}=(3-0) / \mathrm{n}$
By cross multiplication, $\mathrm{nh}=3$
Let us assume $I=\int_{0}^{3}(x+4) d x$
Now, substitute the value of a in formula,
$I=\lim _{h \rightarrow 0} h[f(0)+f(0+h)+f(0+2 h)+\ldots+f(0+(n-1) h)]$
$I=\lim _{h \rightarrow 0} h[f(0)+f(h)+f(2 h)+\ldots+f((n-1) h)]$
So, $f(h)=h+4$ and $f(0)=0+4=4$
$I=\lim _{h \rightarrow 0} h[4+(h+4)+(2 h+4)+\ldots+((n-1) h+4)]$
Then,
$I=\lim _{h \rightarrow 0} h[4 n+h(1+2+3+\ldots+(n-1))$
$I=\lim _{h \rightarrow 0} h[4 n+h((n(n-1)) / 2)]$
Since, $\mathrm{h} \rightarrow 0$ and $\mathrm{h}=\frac{3}{\mathrm{n}} \Rightarrow \mathrm{n} \rightarrow \infty$
$I=\lim _{n \rightarrow \infty} 3 / n[4 n+(3 / n) n(n-1) / 2]$
$I=\lim _{n \rightarrow \infty} 3 / n[4 n+3(n-1) / 2]$
$I=\lim _{n \rightarrow \infty}[12+9(n-1) / 2 n]$
$I=\lim _{n \rightarrow \infty} 12+9 / 2(1-(1 / n))$
Then,
$\mathrm{I}=12+9 / 2(1-1 / \infty)$
$\mathrm{I}=12+(9 / 2)(1-0)$
$1=12+(9 / 2)$
$I=(24+9) / 2$
$I=33 / 2$
Therefore, $\int_{0}^{3}(x+4) d x=\frac{33}{2}$

Question. 2

Solution:

From the question it is given that, $\int_{0}^{2}(x+3) d x$
From the formula,

$$
\int_{a}^{b} f(x) d x=\lim _{h \rightarrow 0} h[f(a)+f(a+h)+f(a+2 h)+\cdots+f(a+(n-1) h)]
$$

Where, $\mathrm{h}=(\mathrm{b}-\mathrm{a}) / \mathrm{n}$
Here, $a=0, b=2$ and $f(x)=(x+3)$
Then, $h=(2-0) / n=2 / n$
By cross multiplication, $\mathrm{nh}=2$
Let us assume $\mathrm{I}=\int_{0}^{2}(x+3) d x$
Now, substitute the value of a in formula,
$I=\lim _{h \rightarrow 0} h[f(0)+f(0+h)+f(0+2 h)+\ldots+f(0+(n-1) h)]$
$I=\lim _{h \rightarrow 0} h[f(0)+f(h)+f(2 h)+\ldots+f((n-1) h)]$
So, $f(h)=h+3$ and $f(0)=0+3=3$
$I=\lim _{h \rightarrow 0} h[3+(h+3)+(2 h+3)+\ldots+((n-1) h+3)]$
Then,
$I=\lim _{h \rightarrow 0} h[3 n+h(1+2+3+\ldots+(n-1))$
$I=\lim _{h \rightarrow 0} h[3 n+h((n(n-1)) / 2)]$
Since, $\mathrm{h} \rightarrow 0$ and $\mathrm{h}=\frac{2}{\mathrm{n}} \Rightarrow \mathrm{n} \rightarrow \infty$
$I=\lim _{n \rightarrow \infty} 2 / n[3 n+(2 / n)(n(n-1) / 2)]$
$I=\lim _{n \rightarrow \infty} 2 / n[3 n+(n-1)]$
$I=\lim _{n \rightarrow \infty}[6+2(n-1) / n]$
$I=\lim _{n \rightarrow \infty}[6+2(1-(1 / n))]$
Then,
$I=6+2(1-1 / \infty)$
$1=6+2(1-0)$
$\mathrm{I}=6+2$

I = 8
Therefore, $\int_{0}^{2}(x+3) d x=8$

Question. 3

Solution:

From the question it is given that, $\int_{1}^{3}(3 x-2) d x$
From the formula,
$\int_{a}^{b} f(x) d x=\lim _{h \rightarrow 0} h[f(a)+f(a+h)+f(a+2 h)+\cdots+f(a+(n-1) h)]$
Where, $\mathrm{h}=(\mathrm{b}-\mathrm{a}) / \mathrm{n}$
Here, $a=1, b=3$ and $f(x)=(3 x-2)$
Then, $h=(3-1) / n=2 / n$
By cross multiplication, $\mathrm{nh}=2$
Let us assume $\mathrm{I}=\int_{1}^{3}(3 \mathrm{x}-2) \mathrm{dx}$
Now, substitute the value of a in formula
$I=\lim _{h \rightarrow 0} h[f(1)+f(1+h)+f(1+2 h)+\ldots+f(1+(n-1) h)]$
So, $f(1+h)=3(1+h)-2=3+3 h-2=3 h+1$ and $f(1)=3(1)-2=3-2=1$
$I=\lim _{h \rightarrow 0} h[1+\{3(1+h)-2\}+\{3(1+2 h)-2\}+\ldots+\{3(1+(n-1) h-2\}]$
Then,
$I=\lim _{h \rightarrow 0} h[n+3 h(1+2+3+\ldots+(n-1))$
$I=\lim _{h \rightarrow 0} h[n+3 h((n(n-1)) / 2)]$
Since, $\mathrm{h} \rightarrow 0$ and $\mathrm{h}=\frac{2}{\mathrm{n}} \Rightarrow \mathrm{n} \rightarrow \infty$
$\left.I=\lim _{n \rightarrow \infty} 2 / n[n+(3(2) / n))(n(n-1) / 2)\right]$
$I=\lim _{n \rightarrow \infty} 2 / n[n+(6(n-1)) / 2]$
$I=\lim _{n \rightarrow \infty} 2 / n[n+(3(n-1))]$
$1=\lim _{n \rightarrow \infty}[2+(6(n-1)) / n]$
$I=\lim _{n \rightarrow \infty}[2+6(1-(1 / n))]$
Then,
$1=2+6(1-1 / \infty)$
$\mathrm{I}=2+6(1-0)$
$\mathrm{I}=2+6$
$I=8$
Therefore, $\int_{1}^{3}(3 x-2) d x=8$

Question. 4

Solution:

From the question it is given that, $\int_{-1}^{1}(x+3) d x$
From the formula,

$$
\int_{a}^{b} f(x) d x=\lim _{h \rightarrow 0} h[f(a)+f(a+h)+f(a+2 h)+\cdots+f(a+(n-1) h)]
$$

Where, $\mathrm{h}=(\mathrm{b}-\mathrm{a}) / \mathrm{n}$
Here, $a=-1, b=1$ and $f(x)=(3 x-2)$
Then, $h=(1-(-1)) / n=2 / n$
By cross multiplication. $\mathrm{nh}=2$
Let us assume $\mathrm{I}=\int_{-1}^{1}(x+3) d x$
Now, substitute the value of a in formula
$I=\lim _{h \rightarrow 0} h[f(-1)+f(-1+h)+f(-1+2 h)+\ldots+f(-1+(n-1) h)]$
So, $f(-1+h)=-1+h+3=h+2$ and $f(-1)=-1+3=2$
$I=\lim _{h \rightarrow 0} h[2+(2+h)+(2+2 h)+\ldots+((n-1) h+2)]$
Then,
$I=\lim _{h \rightarrow 0} h[2 n+h(1+2+3+\ldots+(n-1))$
$I=\lim _{h \rightarrow 0} h[2 n+h((n(n-1)) / 2)]$
Since, $h \rightarrow 0$ and $h=\frac{2}{n} \Rightarrow n \rightarrow \infty$
$I=\lim _{n \rightarrow \infty} 2 / n[2 n+(2 / n)(n(n-1) / 2)]$
$I=\lim _{n \rightarrow \infty} 2 / n[2 n+(n-1)]$
$1=\lim _{n \rightarrow \infty}[4+(2(n-1)) / n]$
$I=\lim _{n \rightarrow \infty}[4+2(1-(1 / n))]$
Then,
$1=4+2(1-1 / \infty)$
$1=4+2(1-0)$
$\mathrm{I}=4+2$
$I=6$
Therefore, $\int_{-1}^{1}(x+3) d x=6$

Question. 5

Solution:

From the question it is given that, $\int_{1}^{3}(3 x-2) d x$
From the formula,
$\int_{a}^{b} f(x) d x=\lim _{h \rightarrow 0} h[f(a)+f(a+h)+f(a+2 h)+\cdots+f(a+(n-1) h)]$
Where, $\mathrm{h}=(\mathrm{b}-\mathrm{a}) / \mathrm{n}$
Here, $a=1, b=3$ and $f(x)=(3 x-2)$
Then, $h=(3-1) / n=2 / n$
By cross multiplication, $\mathrm{nh}=2$
Let us assume $\mathrm{I}=\int_{1}^{3}(3 \mathrm{x}-2) \mathrm{dx}$
Now, substitute the value of a in formula
$I=\lim _{h \rightarrow 0} h[f(1)+f(1+h)+f(1+2 h)+\ldots+f(1+(n-1) h)]$
So, $f(1+h)=3(1+h)-2=3+3 h-2=3 h+1$ and $f(1)=3(1)-2=3-2=1$
$I=\lim _{h \rightarrow 0} h[1+(h+1)+(2 h+1)+\ldots+((n-1) h+1\}]$
Then,
$I=\lim _{h \rightarrow 0} h[n+h(1+2+3+\ldots+(n-1))$
$I=\lim _{h \rightarrow 0} h[n+h((n(n-1)) / 2)]$
Since, $h \rightarrow 0$ and $h=\frac{5}{n} \Rightarrow n \rightarrow \infty$
$I=\lim _{n \rightarrow \infty} 5 / n[n+(5 / n)(n(n-1) / 2)]$
$I=\lim _{n \rightarrow \infty} 5 / n[n+(5(n-1)) / 2]$
$I=\lim _{n \rightarrow \infty}[5+(25(n-1)) / 2 n]$
$I=\lim _{n \rightarrow \infty}[5+(25 / 2)(1-(1 / n))]$
Then,
$I=5+(25 / 2)(1-1 / \infty)$
$\mathrm{I}=5+(25 / 2)(1-0)$
$I=5+25 / 2$

$$
\begin{aligned}
& I=(10+25) / 2 \\
& I=35 / 2
\end{aligned}
$$

Therefore, $\int_{0}^{5}(x+1) d x-\frac{35}{2}$

