

EXERCISE 22.6

Question. 1

Solution:

From the question it is given that, $(dy/dx) + ((1 + y^2)/y) = 0$ Transposing we get, $dy/dx = -(1 + y^2)/y$ By cross multiplication, $(y/(1 + y^2)) dy = -dx$ Integrating on both side, we get, $\int (y/(1 + y^2)) dy = \int -dx$ $\int (2y/(1 + y^2)) dy = -2 \int dx$ $\log (1 + y^2) = -2x + c_1$ Therefore, $\frac{1}{2} \log [1 + y^2] + x = c$

Question. 2

Solution:

From the question it is given that, $(dy/dx) = ((1 + y^2)/y^3)$ By cross multiplication, $(y^3/(1 + y^2)) dy = dx$ Integrating on both side, we get, $\int (y - (y/(1 + y^2)) dy = \int dx$ $\int ydy - \int (y/(1 + y^2)) dy = \int dx$ $\int ydy - \frac{1}{2} \int (2y/(1 + y^2)) dy = \int dx$ $\int (y^2/2) - \frac{1}{2} \log [y^2 + 1] = x + c$

Question. 3

Solution:

From the question it is given that, $(dy/dx) = \sin^2 y$ By cross multiplication, $dy/\sin^2 y = dx$ We know that, $(1/\sin x) = \csc x$ $\csc^2 y dy = dx$ Integrating on both side, we get,

$$\int \csc^2 y \, dy = \int dx + c$$

- cot y = x + c

Question. 4

Solution:

From the question it is given that, $(dy/dx) = (1 - \cos 2y)/(1 + \cos 2y)$ We know that, $1 - \cos 2y = 2 \sin^2 y$ and $1 + \cos 2y = 2 \cos^2 y$ So, $dy/dx = (2 \sin^2 y)/(2 \cos^2 y)$ Also we know that, $\sin \theta/\cos \theta = \tan \theta$ By cross multiplication, $dy/\tan^2 y = dx$ Integrating on both side, we get, $\int \cot^2 y \ dy = \int dx$ $\int (\csc^2 y - 1) \ dy = \int dx$ $-\cot y - y + c = x$ $c = x + y + \cot y$