EXERCISE 29.15

Q1.

Solution:
Given:
Let point $\mathrm{P}=(0,0,0)$ and M be the image of P in the plane
$3 x+4 y-6 z+1=0$.
Direction ratios of PM are proportional to $3,4,-6$ as PM is normal to the plane.
The equation of the line passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direction ratios proportional to $\mathrm{l}, \mathrm{m}, \mathrm{n}$ is given by
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{l}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{n}}$
Here,
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)=(0,0,0)$ and $(1, \mathrm{~m}, \mathrm{n})=(3,4,-6)$
Hence, the equation of PM is

$$
\begin{aligned}
& \frac{x-0}{3}=\frac{y-0}{4}=\frac{z-0}{-6} \\
& \Rightarrow \frac{x}{3}=\frac{y}{4}=\frac{z}{-6}=\alpha \text { (say) } \\
& x=3 \alpha, y=4 \alpha, z=-6 \alpha
\end{aligned}
$$

Let $\mathrm{M}=(3 \alpha, 4 \alpha,-6 \alpha)$.
As M is the image of P in the given plane, the midpoint of PM lies on the plane.
Using the midpoint formula, we have

$$
\begin{aligned}
\text { Midpoint of } \mathrm{PM} & =\left(\frac{0+3 \alpha}{2}, \frac{0+4 \alpha}{2}, \frac{0-6 \alpha}{2}\right) \\
& =\left(\frac{3 \alpha}{2}, 2 \alpha,-3 \alpha\right)
\end{aligned}
$$

This point lies on the given plane, which means this point satisfies the plane equation.

$$
\begin{aligned}
& \text { So, } \\
& \Rightarrow 3\left(\frac{3 \alpha}{2}\right)+4(2 \alpha)-6(-3 \alpha)+1=0 \\
& \frac{9 \alpha}{2}+8 \alpha+18 \alpha+1=0
\end{aligned}
$$

$$
9 \alpha+16 \alpha+36 \alpha
$$

$$
61 \alpha=-2
$$

$$
\alpha=-\frac{2}{61}
$$

We have $\mathrm{M}=(3 \alpha, 4 \alpha,-6 \alpha)$

$$
\begin{aligned}
\Rightarrow \mathrm{M} & =\left(3\left(-\frac{2}{61}\right), 4\left(-\frac{2}{61}\right),-6\left(-\frac{2}{61}\right)\right) \\
& =\left(-\frac{6}{61},-\frac{8}{61}, \frac{12}{61}\right)
\end{aligned}
$$

Hence, the image of $(0,0,0)$ in the plane $3 x+4 y-6 z+1=0$ is $\left(-\frac{6}{61},-\frac{8}{61}, \frac{12}{61}\right)$

Q2.
Solution:
Given:
Let point $P=(1,2,-1)$ and M be the image of P in the plane $3 x-5 y+4 z=5$.
Direction ratios of PM are proportional to $3,-5,4$ as PM is normal to the plane.
The equation of the line passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direction ratios proportional to $\mathrm{l}, \mathrm{m}, \mathrm{n}$ is given by

$$
\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}
$$

Here,

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)=(1,2,-1) \text { and }(1, \mathrm{~m}, \mathrm{n})=(3,-5,4)
$$

So, the equation of PM is

$$
\begin{aligned}
& \frac{x-1}{3}=\frac{y-2}{-5}=\frac{z-(-1)}{4} \\
& \frac{x-1}{3}=\frac{y-2}{-5}=\frac{z+1}{4}=\alpha \text { (say) } \\
& x=3 \alpha+1, y=-5 \alpha+2, z=4 \alpha-1
\end{aligned}
$$

Let $\mathrm{M}=(3 \alpha+1,-5 \alpha+2,4 \alpha-1)$.

As M is the image of P in the given plane, the midpoint of PM lies on the plane. Using the midpoint formula, we have
Midpoint of $\mathrm{PM}=\left(\frac{1+(3 \alpha+1)}{2}, \frac{2+(-5 \alpha+2)}{2}, \frac{-1+(4 \alpha-1)}{2}\right)$
Midpoint of PM $=\left(\frac{3 \alpha+2}{2}, \frac{-5 \alpha+4}{2}, 2 \alpha-1\right)$

This point lies on the given plane, which means this point satisfies the plane equation.

$$
\begin{aligned}
& 3\left(\frac{3 \alpha+2}{2}\right)-5\left(\frac{-5 \alpha+4}{2}\right)+4(2 \alpha-1)=5 \\
& \frac{9 \alpha+6}{2}-\frac{-25 \alpha+20}{2}+8 \alpha-4=5 \\
& \frac{9 \alpha+6+25 \alpha-20+16 \alpha}{2}=9
\end{aligned}
$$

$50 \alpha-14=18$
$50 \alpha=32$
$\alpha=\frac{32}{50}=\frac{16}{25}$
We have $\mathrm{M}=(3 \alpha+1,-5 \alpha+2,4 \alpha-1)$

$$
\begin{aligned}
& \mathrm{M}=\left(3\left(\frac{16}{25}\right)+1,-5\left(\frac{16}{25}\right)+2,4\left(\frac{16}{25}\right)-1\right) \\
& \mathrm{M}=\left(\frac{48}{25}+1,-\frac{16}{5}+2, \frac{64}{25}-1\right) \\
& \mathrm{M}=\left(\frac{73}{25},-\frac{6}{5}, \frac{39}{25}\right)
\end{aligned}
$$

Hence, the image of $(1,2,-1)$ in the plane $3 x-5 y+4 z=5$ is $\left(\frac{73}{25},-\frac{6}{5}, \frac{39}{25}\right)$.

Q3.
Solution:

Given:

Let point $\mathrm{P}=(5,4,2)$ and Q be the foot of the perpendicular drawn from to P the line $\frac{\mathrm{x}+1}{2}=\frac{\mathrm{y}-3}{3}=\frac{\mathrm{z}-1}{-1}$.

Q is a point on the given line. So, for some α, Q is given by

$$
\begin{aligned}
& \frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}=\alpha \text { (say) } \\
& x=2 \alpha-1, y=3 \alpha+3, z=-\alpha+1
\end{aligned}
$$

So, $\mathrm{Q}=(2 \alpha-1,3 \alpha+3,-\alpha+1)$
Now, let us find the direction ratios of PQ .
The direction ratios of a line joining two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ are given by $\left(\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}, \mathrm{z}_{2}-\mathrm{z}_{1}\right)$.
Here,
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)=(5,4,2)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)=(2 \alpha-1,3 \alpha+3,-\alpha+1)$
Direction Ratios of PQ are $((2 \alpha-1)-(5),(3 \alpha+3)-(4),(-\alpha+1)-(2))$
Direction Ratios of PQ are $(2 \alpha-6,3 \alpha-1,-\alpha-1)$
PQ is perpendicular to the given line, whose direction ratios are $(2,3,-1)$.
We know that if two lines with direction ratios $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ are perpendicular to each other, then $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$.
(2) $(2 \alpha-6)+(3)(3 \alpha-1)+(-1)(-\alpha-1)=0$
$4 \alpha-12+9 \alpha-3+\alpha+1=0$
$14 \alpha-14=0$
$14 \alpha=14$
$\alpha=1$
We have $\mathrm{Q}=(2 \alpha-1,3 \alpha+3,-\alpha+1)$
$\mathrm{Q}=(2 \times 1-1,3 \times 1+3,-1+1)$
$\mathrm{Q}=(1,6,0)$
Using the distance formula, we have

$$
\begin{aligned}
P Q & =\sqrt{(1-5)^{2}+(6-4)^{2}+(0-2)^{2}} \\
& =\sqrt{(-4)^{2}+2^{2}+(-2)^{2}} \\
& =\sqrt{16+4+4} \\
& =\sqrt{24}
\end{aligned}
$$

$=2 \sqrt{6}$
Hence, the required foot of perpendicular is $(1,6,0)$ and the length of the perpendicular is $2 \sqrt{6}$ units.

Q4.

Solution:

Given:

Let P be the point with position vector $\vec{p}=3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ and M be the image of P in the plane $\overrightarrow{\mathrm{r}} .(2 \hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}})=4$.

In addition, let Q be the foot of the perpendicular from P on to the given plane. So, Q is the midpoint of PM .

Direction ratios of PM are proportional to $2,-1,1$ as PM is normal to the plane and parallel to $2 \hat{\imath}-\hat{\jmath}+\hat{k}$.

The vector equation of the line passing through the point with position vector
\vec{r} and parallel to vector \vec{b} is given by
$\vec{r}=\vec{a}+\lambda \vec{b}$
Here,
$\overrightarrow{\mathrm{a}}=3 \hat{\imath}+\hat{\jmath}+2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}}$
Hence, the equation of PM is
$\overrightarrow{\mathrm{r}}=(3 \hat{\imath}+\hat{\jmath}+2 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}})$
$\overrightarrow{\mathrm{r}}=(3+2 \lambda) \hat{\imath}+(1-\lambda) \hat{\jmath}+(2+\lambda) \hat{k}$
Let the position vector of M be $\overrightarrow{\mathrm{m}}$. As M is a point on this line, for some scalar α, we have
$\overrightarrow{\mathrm{m}}=(3+2 \alpha) \hat{\imath}+(1-\alpha) \hat{\jmath}+(2+\alpha) \hat{\mathrm{k}}$
Now, let us find the position vector of Q, the midpoint of $P M$.
Let this be $\overrightarrow{\mathrm{q}}$.
Using the midpoint formula, we have
$\overrightarrow{\mathrm{q}}=\frac{\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{m}}}{2}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{q}}=\frac{[3 \hat{\imath}+\hat{\jmath}+2 \hat{\mathrm{k}}]+[(3+2 \alpha) \hat{\imath}+(1-\alpha) \hat{\jmath}+(2+\alpha) \hat{\mathrm{k}}]}{2} \\
& \overrightarrow{\mathrm{q}}=\frac{(3+(3+2 \alpha)) \hat{\imath}+(1+(1-\alpha)) \hat{\mathrm{\jmath}}+(2+(2+\alpha)) \hat{\mathrm{k}}}{2} \\
& \overrightarrow{\mathrm{q}}=\frac{(6+2 \alpha) \hat{\imath}+(2-\alpha) \hat{\jmath}+(4+\alpha) \hat{\mathrm{k}}}{2} \\
& \overrightarrow{\mathrm{q}}=(3+\alpha) \hat{\imath}+\frac{(2-\alpha)}{2} \hat{\jmath}+\frac{(4+\alpha)}{2} \hat{\mathrm{k}}
\end{aligned}
$$

This point lies on the given plane, which means this point satisfies the plane equation $\overrightarrow{\mathrm{r}} .(2 \hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}})=4$.

$$
\left[(3+\alpha) \hat{\imath}+\frac{(2-\alpha)}{2} \hat{\jmath}+\frac{(4+\alpha)}{2} \hat{k}\right] \cdot(2 \hat{\imath}-\hat{\jmath}+\hat{k})=4
$$

$$
2(3+\alpha)-\left(\frac{2-\alpha}{2}\right)(1)+\left(\frac{4+\alpha}{2}\right)(1)=4
$$

$$
6+2 \alpha+\frac{4+\alpha-(2-\alpha)}{2}=4
$$

$$
2 \alpha+(1+\alpha)=-2
$$

$$
3 \alpha=-3
$$

$$
\alpha=-1
$$

We have the image

$$
\begin{aligned}
& \overrightarrow{\mathrm{m}}=(3+2 \alpha) \hat{\imath}+(1-\alpha) \hat{\jmath}+(2+\alpha) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{~m}}=[3+2(-1)] \hat{\imath}+[1-(-1)] \hat{\jmath}+[2+(-1)] \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{~m}}=\hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}}
\end{aligned}
$$

Therefore, image is $(1,2,1)$
Foot of the perpendicular:
$\overrightarrow{\mathrm{q}}=(3+\alpha) \hat{\imath}+\frac{(2-\alpha)}{2} \hat{\jmath}+\frac{(4+\alpha)}{2} \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{q}}=[3+(-1)] \hat{\imath}+\left[\frac{2-(-1)}{2}\right] \hat{\mathrm{\jmath}}+\left[\frac{4+(-1)}{2}\right] \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{q}}=2 \hat{\imath}+\frac{3}{2} \hat{\mathrm{\jmath}}+\frac{3}{2} \hat{\mathrm{k}}$
Hence, the position vector of the image is $\hat{\imath}+2 \hat{\jmath}+\hat{k}$ and that of the foot of perpendicular is $2 \hat{\imath}+\frac{3}{2} \hat{\jmath}+\frac{3}{2} \hat{\mathrm{k}}$.

Q5.

Solution:

Given:
Let point $\mathrm{P}=(1,1,2)$ and Q be the foot of the perpendicular drawn from P to the plane $2 x-2 y+4 z+5=0$.

Direction ratios of PQ are proportional to $2,-2,4$ as PQ is normal to the plane.
The equation of the line passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direction ratios proportional to $\mathrm{l}, \mathrm{m}, \mathrm{n}$ is given by
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{l}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{n}}$
Here,
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)=(1,1,2)$ and $(1, \mathrm{~m}, \mathrm{n})=(2,-2,4)$
So, the equation of PQ is

$$
\begin{aligned}
& \frac{x-1}{2}=\frac{y-1}{-2}=\frac{z-2}{4} \\
& \frac{x-1}{2}=\frac{y-1}{-2}=\frac{z-2}{4}=\alpha \text { (say) } \\
& x=2 \alpha+1, y=-2 \alpha+1, z=4 \alpha+2 \\
& \text { Let } Q=(2 \alpha+1,-2 \alpha+1,4 \alpha+2)
\end{aligned}
$$

This point lies on the given plane, which means this point satisfies the plane equation.

$$
\begin{aligned}
& 2(2 \alpha+1)-2(-2 \alpha+1)+4(4 \alpha+2)+5=0 \\
& 4 \alpha+2+4 \alpha-2+16 \alpha+8+5=0 \\
& 24 \alpha+13=0 \\
& 24 \alpha=-13 \\
& \alpha=-\frac{13}{24}
\end{aligned}
$$

We have $\mathrm{Q}=(2 \alpha+1,-2 \alpha+1,4 \alpha+2)$

$$
\begin{aligned}
\mathrm{Q} & =\left(2\left(-\frac{13}{24}\right)+1,-2\left(-\frac{13}{24}\right)+1,4\left(-\frac{13}{24}\right)+2\right) \\
& =\left(-\frac{13}{12}+1, \frac{13}{12}+1, \frac{-13}{6}+2\right) \\
& =\left(-\frac{1}{12}, \frac{25}{12},-\frac{1}{6}\right)
\end{aligned}
$$

The length of the perpendicular drawn from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ to the plane $\mathrm{Ax}+\mathrm{By}+$ $\mathrm{Cz}+\mathrm{D}=0$ is given by
$\left|\frac{A x_{1}+B y_{1}+C z_{1}+D}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|$
Here,
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)=(1,1,2)$ and $(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=(2,-2,4,5)$

$$
\begin{aligned}
P Q & =\left|\frac{(2)(1)+(-2)(1)+(4)(2)+5}{\sqrt{2^{2}+(-2)^{2}+4^{2}}}\right| \\
& =\left|\frac{2-2+8+5}{\sqrt{4+4+16}}\right| \\
& =\left|\frac{13}{\sqrt{24}}\right| \\
& =\frac{13}{2 \sqrt{6}}
\end{aligned}
$$

Hence, the required foot of perpendicular is $\left(-\frac{1}{12}, \frac{25}{12},-\frac{1}{6}\right)$ and the length of the perpendicular is $\frac{13}{2 \sqrt{6}}$ units.

