Class- X

Mathematics-Basic (241)

Marking Scheme SQP-2020-21

Max. Marks: 80 Duration:3hrs

		1
1	$156 = 2^2 \times 3 \times 13$	
2	Quadratic polynomial is given by x² - (a +b) x +ab	1
	x ² -2x -8	
3	HCF X LCM =product of two numbers	1/2
	$LCM (96,404) = \frac{96 \times 404}{HCF(96,404)} = \frac{96 \times 404}{4}$	1/2
	LCM = 9696	
	OR	
	Every composite number can be expressed (factorized) as a product	1
	of primes, and this factorization is unique, apart from the order in	
	which the factors occur.	
4	x – 2y =0	
	3x + 4y - 20 = 0	
	1 , -2	
	$\frac{1}{3} \neq \frac{-2}{4}$	1/2
	As, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ is one condition for consistency.	
	a2 b2	
	Therefore, the pair of equations is consistent.	1/2
5	1	1
5		'
6	e = 60°	
	Area of sector = $\frac{\theta}{360^{\circ}} \Pi r^2$	
	$A = \frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times (6)^{2} \text{ cm}^{2}$	1/2
	$A = \frac{1}{6} X \frac{22}{7} X36 \text{ cm}^2$	1/
	= 18.86cm ²	1/2

	OR	
	Another method- Horse can graze in the field which is a circle of radius 28 cm. So, required perimeter = $2\Pi r= 2.\Pi(28)$ cm = $2 \times \frac{22}{7} \times (28)$ cm = 176 cm	1/2
7	By converse of Thale's theorem DE II BC	1/2
	\bot ABC + \bot BAC + \bot BCA = 180° (Angle sum prop of triangles) $70^{\circ} + 50^{\circ} + \bot$ BCA = 180° \bot BCA = 180° - 120° = 60°	1/2
	OR	
	EC = AC – AE = (7-3.5) cm = 3.5 cm $\frac{AD}{BD} = \frac{2}{3}$ and $\frac{AE}{EC} = \frac{3.5}{3.5} = \frac{1}{1}$ So, $\frac{AD}{BD} \neq \frac{AE}{EC}$	1/2
	Hence, By converse of Thale's Theorem, DE is not Parallel to BC.	1/2
8	Length of the fence = $\frac{Total cost}{Rate}$ = $\frac{Rs.5280}{Rs 24/metre}$ = 220 m So, length of fence = Circumference of the field \therefore 220m= 2 Π r=2 $\times \frac{22}{7}$ x r	1/2
	So, $r = \frac{220 \times 7}{2 \times 22} \text{ m} = 35 \text{ m}$	1/2
9	A 30 C	
	Sol: $\tan 30^\circ = \frac{AB}{BC}$ $1/\sqrt{3} = \frac{AB}{8}$	1/2
	AB = 8 / $\sqrt{3}$ metres Height from where it is broken is 8/ $\sqrt{3}$ metres	1/2

10	Perimeter = Area	1
	$2\Pi r = \Pi r^2$	
	r = 2 units	
11	3 median = mode + 2 mean	1
12	8	1
13	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ is the condition for the given pair of equations to have unique solution.	1/2
	$\frac{4}{2} \neq \frac{p}{2}$	
	p ≠4	1/2
	Therefore, for all real values of p except 4, the given pair of equations will have a unique solution.	,,,
	OR	
	a_1 a_1 a_1 a_1 a_1 a_1 a_1	
	Here, $\frac{a1}{a2} = \frac{2}{4} = \frac{1}{2}$	
	$\frac{b1}{b2} = \frac{3}{6} = \frac{1}{2}$ and $\frac{c1}{c2} = \frac{5}{7}$	
	$\frac{1}{2} = \frac{1}{2} \neq \frac{5}{7}$	
	$\frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2}$ is the condition for which the given system of equations will represent parallel lines.	1/2
	So, the given system of linear equations will represent a pair of parallel lines.	1/2
14	No. of red balls = 3, No.black balls =5	1/2
	Total number of balls = $5 + 3 = 8$	1/2
	Probability of red balls $=\frac{3}{8}$	'-
	OR	
	Total no of possible outcomes = 6	1,
	There are 3 Prime numbers, 2,3,5.	1/ ₂ 1/ ₂
	So, Probability of getting a prime number is $\frac{3}{6} = \frac{1}{2}$	/2

15		
	A h B 15 m	1/2
	$\tan 60^{\circ} = \frac{h}{15}$ $\sqrt{3} = \frac{h}{15}$ $h = 15\sqrt{3} \text{ m}$	1/2
16	1	1
17 i)	Ans : b) Cloth material required = 2X S A of hemispherical dome $= 2 \times 2\Pi r^{2}$ $= 2 \times 2x \frac{2^{2}}{7} \times (2.5)^{2} m^{2}$ $= 78.57 m^{2}$	1
ii)	a) Volume of a cylindrical pillar = Π r²h	1
iii)	b) Lateral surface area = $2x \ 2\Pi rh$ = $4 \ x^{\frac{22}{7}} \ x \ 1.4 \ x \ 7 \ m^2$ = $123.2 \ m^2$	1
iv)	d) Volume of hemisphere $=\frac{2}{3} \Pi r^3$ = $\frac{2}{3} \frac{22}{7} (3.5)^3 m^3$ = 89.83 m ³	1
v)	b) Sum of the volumes of two hemispheres of radius 1cm each= $2 \times \frac{2}{3} \Pi 1^3$ Volume of sphere of radius 2cm = $\frac{4}{3} \Pi 2^3$ So, required ratio is $\frac{2 \times \frac{2}{3} \Pi 1^3}{\frac{4}{3} \Pi 2^3}$ = 1:8	1/2

18 i)	c) (0,0)	1
ii)	a) (4,6)	1
iii)	a) (6,5)	1
iv)	a) (16,0)	1
v)	b) (-12,6)	1
19 i)	c) 90°	1
ii)	b) SAS	1
iii)	b) 4:9	1
iv)	d) Converse of Pythagoras theorem	1
v)	a) 48 cm ²	1
20 i)	d) parabola	1
ii)	a) 2	1
iii)	b) -1, 3	1
iv)	c) $x^2 - 2x - 3$	1
V)	d) 0	1
21	Let P(x,y) be the required point. Using section formula	
	$\left\{\frac{m 1x2 + m2x1}{m1 + m2}, \frac{m1y2 + m2y1}{m1 + m2}\right\} = (x, y)$ $x = \frac{3(8) + 1(4)}{m1 + m2}, y = \frac{3(5) + 1(-3)}{m1 + m2}$	1
	$x = \frac{3(8)+1(4)}{3+1}$, $y = \frac{3(5)+1(-3)}{3+1}$ x = 7 $y = 3(7,3) is the required point$	1
	1	

	OR	
	Let P(x, y) be equidistant from the points A(7,1) and B(3,5) Given AP =BP. So, $AP^2 = BP^2$	1
	$(x-7)^2 + (y-1)^2 = (x-3)^2 + (y-5)^2$ $x^2 -14x+49 + y^2-2y + 1 = x^2-6x + 9+y^2-10y+25$ x - y = 2	1
22	By BPT, $\frac{AM}{MB} = \frac{AL}{LC} \qquad(1)$	1/2
	Also, $\frac{AN}{ND} = \frac{AL}{LC}$ (2)	1/2
	By Equating (1) and (2) $\frac{AM}{MB} = \frac{AN}{ND}$	1
	Proof: AS = AP (Length of tangents from an external point to a circle are equal) BQ = BP CQ = CR DS = DR AS + BQ + CQ + DS = AP + BP + CR + DR	1
24	(AS+ DS) + (BQ + CQ) = (AP + BP) + (CR + DR) AD + BC = AB + CD For the correct construction	2

25	15 cot A =8, find sin A and sec A.	
20	Cot A =8/15	1
	Oot A = 0/10	'
	c \	
	15x	
	\(\frac{1}{2}\)	
	B <u></u> A	
	8x	
	Adj = 8/15	
	$\left \frac{Adj}{Oppo} \right = 8/15$	
	By Pythagoras Theorem	
	$AC^2 = AB^2 + BC^2$	
	$AC = \sqrt{(8x)^2 + (15x)^2}$	1/2
	·	
	AC= 17x	
	Cin A = 45/47	1/2
	Sin A = 15/17	
	Cos A =8/17	
	OR	
	D D #	
	By Pythagoras Theorem	
	$QR = \sqrt{(13)^2 - (12)^2} \text{ cm}$	1
	QR = 5cm	
	Tan P =5/12	
	Cot R =5/12	1
	Tan P -Cot R =5/12 -5/12	'
	= 0	
26	9,17,25,	
	$S_n = 636$	
	a = 9	1/2
	$d = a_2 \cdot a_1$	
	= 17 - 9 = 8	
	$S_n = \frac{n}{2} [2a + (n-1) d]$	
	Sn = $\frac{n}{2}$ [2a + (n-1) d]	1/2
L		<i>'-</i>

	$636 = \frac{n}{2} [2x 9 + (n-1) 8]$	
	1272 = n [18 + 8n -8]	
	1272 = n [10 +8n]	
	8n ² +10n -1272 =0	
	$4n^2 + 5n - 636 = 0$	
	$-b\pm\sqrt{b^2-4ac}$	1/2
	$n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$n = \frac{-5 \pm \sqrt{5^2 - 4x \ 4x(-636)}}{2x4}$	
	$11 - {2x4}$	
	$n = -\frac{-5 \pm 101}{8}$	
	n^{-96} n^{-106}	
	$n = \frac{96}{8}$ $n = \frac{-106}{8}$ $n = -\frac{-53}{4}$	
	$n=12$ $n=-\frac{-53}{4}$	
		1/2
	n=12 (since n cannot be negative)	
	, ,	
27	Let $\sqrt{3}$ be a rational number.	
	Then $\sqrt{3} = p/q$ HCF $(p,q) = 1$	1
	Squaring both sides	
	$(\sqrt{3})^2 = (p/q)^2$	
	$3 = p^2/q^2$	
	$3q^2 = p^2$	
	3 divides p ² » 3 divides p	
	3 is a factor of p	
	Take p = 3C	1/2
	$3q^2 = (3c)^2$	
	$3q^2 = 9C^2$	
	3 divides q ² » 3 divides q	1/2
	3 is a factor of q	
	Therefore 3 is a common factor of p and q	
	It is a contradiction to our assumption that p/q is rational.	1
	Hence √3 is an irrational number.	
	B	
28		
	T< (\₀)	

	Required to prove -: LPTQ = 2LOPQ	1
	Sol:-Let LPTQ = e	
	Now by the theorem TP = TQ. So, TPQ is an isosceles triangle \bot TPQ = \bot TQP = $\frac{1}{2}$ (180° -e)	1
	$= 90^{\circ} - \frac{1}{2} \Theta$!
	_ 90 - 72 6	1/2
	LOPQ = LOPT - LTPQ =90° -(90° - ½ θ)	/2
	= ½ θ	
	= ½ ∟PTQ	1/2
	- /2 LT TQ	/2
	∟PTQ = 2∟OPQ	
29	Let Meena has received x no. of 50 re notes and y no. of 100 re	1
	notes.So,	
	50 x + 100 y =2000	
	x + y = 25	
	multiply by 50	
		1
	50x + 100y =2000	
	$50 \times + 50 \text{ y} = 1250$	
	<u> </u>	
	50y =750	
	Y= 15	
		1
	Putting value of y=15 in equation (2)	
	x+ 15 =25	
	x = 10	
	Meena has received 10 pieces 50 re notes and 15 pieces of 100 re notes	
30	(i) 10,11,1290 are two digit numbers. There are 81	
	numbers.So,Probability of getting a two-digit number	1
	= 81/90 = 9/10	
	(ii) 1, 4, 9,16,25,36,49,64,81 are perfect squares. So,	1
	Probability of getting a perfect square number. = 9/90 =1/10	
	(iii) 5, 10,1590 are divisible by 5. There are 18 outcomes So,Probability of getting a number divisible by 5. = 18/90 =1/5	1

	OR	
	(i) Probability of getting A king of red colour.	1
	P (King of red colour) = 2/52 =1/26	
	(ii) Probability of getting A spade P (a spade) = 13/52 = 1/4	1
	(iii) Probability of getting The queen of diamonds P (a the queen of diamonds) = 1/52	1
31	r ₁ = 6cm r ₂ = 8cm	
	r_3 = 10cm Volume of sphere = ${}^{4/}_3\Pi$ r^3	1
	Volume of sphere = $^3\Pi\Pi$ Volume of the resulting sphere = Sum of the volumes of the smaller spheres. $^{4/}_3\Pi r^3 = ^{4/}_3\Pi r_1^3 + ^{4/}_3\Pi r_2^3 + ^{4/}_3\Pi r_3^3$ $^{4/}_3\Pi r^3 = ^{4/}_3\Pi (r_1^3 + r_2^3 + r_3^3)$ $r^3 = 6^3 + 8^3 + 10^3$ $r^3 = 1728$ $r = \sqrt[3]{1728}$	1
	r = 12 cm	1
	Therefore, the radius of the resulting sphere is 12cm.	
32	(sin A-cos A+1)/ (sin A+cosA-1) = 1/(sec A-tan A)	
	L.H.S. divide numerator and denominator by cos A	
	= (tan A-1+secA)/ (tan A+1-sec A)	1
	= (tan A-1+secA)/(1-sec A + tan A)	
	We know that 1+tan ² A=sec ² A	1
	Or $1=\sec^2 A - \tan^2 A = (\sec A + \tan A)(\sec A - \tan A)$	
	=(sec A + tan A-1)/[(sec A + tan A)(sec A-tan A)-(sec A-tan A)]	
	=(sec A + tan A-1)/(sec A-tan A)(sec A + tan A-1)	
		1

	= 1/(sec A-tan A) , proved.	
33	Given:-	
	Speed of boat =18km/hr Distance =24km	
	Let <i>x</i> be the speed of stream. Let <i>t</i> 1 and <i>t</i> 2 be the time for upstream and downstream. As we know that,	1/2
	speed= distance / time ⇒time= distance / speed	
	For upstream, Speed =(18-x) km/hr Distance =24km Time =t1 Therefore,	1/2
	$t_1 = \frac{24}{18 - x}$	
	For downstream, Speed =(18+x)km/hr Distance =24km Time =t2 Therefore,	
	$t_2 = \frac{24}{18 + x}$ Now according to the question-	
	t1=t2+1	
	$\frac{24}{18-x} = \frac{24}{18+x} + 1$	
	$\Rightarrow \frac{24(18+x)-24(18-x)}{(18-x)(18+x)} = 1$	1/2
	$\Rightarrow 48x = (18-x)(18+x)$	
	$\Rightarrow 48x = 324 + 18x - 18x - x^2$	
	$\Rightarrow x^{2} + 48x - 324 = 0$ $\Rightarrow x^{2} + 54x - 6x - 324 = 0$ $\Rightarrow x(x+54) - 6(x+54) = 0$ $\Rightarrow (x+54)(x-6) = 0$	

$\Rightarrow x = -54$ or $x = 6$	1/2
Since speed cannot be negative.	
⇒x=-54 will be rejected	
∴ <i>x</i> =6	
Thus, the speed of stream is 6km/hr.	1
OR	
Let one of the odd positive integer be x then the other odd positive integer is x+2 their sum of squares = $x^2 + (x+2)^2$ = $x^2 + x^2 + 4x + 4$ = $2x^2 + 4x + 4$ Given that their sum of squares = 290 $\Rightarrow 2x^2 + 4x + 4 = 290$ $\Rightarrow 2x^2 + 4x = 290 - 4 = 286$ $\Rightarrow 2x^2 + 4x - 286 = 0$ $\Rightarrow 2(x^2 + 2x - 143) = 0$ $\Rightarrow x^2 + 2x - 143 = 0$ $\Rightarrow x^2 + 13x - 11x - 143 = 0$ $\Rightarrow x(x+13) - 11(x+13) = 0$	1
$\Rightarrow (x-11)(x+13) = 0$ $\Rightarrow (x-11) = 0, (x+13) = 0$ Therefore, $x = 11$ or -13 According to question, x is a positive odd integer. Hence, We take positive value of x So, $x = 11$ and $(x+2) = 11 + 2 = 13$ Therefore, the odd positive integers are 11 and 13.	1

Let AB and CD be the multi-storeyed building and the building respectively.

Let the height of the multi-storeyed building= *h* m and

the distance between the two buildings = x m.

$$AE = CD = 8 m [Given]$$

$$BE = AB - AE = (h - 8) m$$

and

$$AC = DE = x m [Given]$$

Also,

$$\angle$$
FBD = \angle BDE = 30° (Alternate angles)

$$\angle$$
FBC = \angle BCA = 45° (Alternate angles)

Now,

In Δ ACB,

$$\Rightarrow \tan 45^0 = \frac{AB}{AC} \left[\because \tan \theta = \frac{Perpendicular}{Base} \right]$$

$$\Rightarrow 1 = \frac{h}{x}$$

$$\Rightarrow x = h.....(i)$$

.

1/2

1

In Δ BDE,

$$\Rightarrow \tan 30^{0} = \frac{BE}{ED}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h-8}{x}$$

$$\Rightarrow x = \sqrt{3}(h-8)....(ii)$$

1

From (i) and (ii), we get,

h =
$$√3$$
h -8 $√3$

$$\sqrt{3}h - h = 8\sqrt{3}$$

h (
$$\sqrt{3}$$
 -1) =8 $\sqrt{3}$

$$h = \frac{8\sqrt{3}}{\sqrt{3}-1}$$

$$h = \frac{8\sqrt{3}}{\sqrt{3} - 1} x \frac{\sqrt{3} + 1}{\sqrt{3} + 1}$$

1

h-= $4\sqrt{3}(\sqrt{3}+1)$

$$h = 12 + 4\sqrt{3} \text{ m}$$

Distance between the two building

$$x = (12 + 4\sqrt{3})m \quad [From(i)]$$

1/2

OR

From the figure, the angle of elevation for the first position of the balloon \bot EAD = 60° and for second position \bot BAC = 30°. The vertical distance

1

	Let AD = x m and AB = y m.	
	Then in right \triangle ADE, tan60° = $\frac{DE}{AD}$	
	$\sqrt{3} = \frac{87}{X}$	1
	$X = \frac{87}{\sqrt{3}}$ (i)	
	In right $\triangle ABC$, tan $30^{\circ} = \frac{BC}{AB}$	
	$\frac{1}{\sqrt{3}} = \frac{87}{y}$	
	Y = 87√3(ii)	1
	Subtracting(i) and (ii)	
	$y-x = 87\sqrt{3} - \frac{87}{\sqrt{3}}$	
	$y-x = \frac{87.2.\sqrt{3}}{\sqrt{3}.\sqrt{3}}$	1
	y-x = 58√3 m	
	Hence, the distance travelled by the balloon is equal to BD	
	y-x =58√3 m.	1
35	Let A be the first term and D the common difference of A.P.	
	Tp=a=A+(p-1)D=(A-D)+pD (1)	1/2
	Tq=b=A+(q-1)D=(A-D)+qD(2)	1/2
	Tr = c = A + (r-1)D = (A-D) + rD(3)	1/2
	Here we have got two unknowns A and D which are to be eliminated.	
	We multiply (1),(2) and (3) by $q-r,r-p$ and $p-q$ respectively and add:	
	a (q-r) = (A - D)(q-r) + D p(q-r) $b(r-p) = (A-D) (r-p) + Dq (r-p)$ $c(p-q) = (A-D) (p-q) + Dr (p-q)$	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂
	a(q-r)+b(r-p)+c(p-q)	1
	= (A-D)[q-r+r-p+p-q]+D[p(q-r)+q(r-p)+r(p-q)] $= (A-D)(0)+D[pq-pr+qr-pq+rp-rq)$ $= 0$	1

36
145-150
145-150
155-160 6 46 160-165 5 51 $N=51\Rightarrow$ N/2=51/2=25.5 As 29 is just greater than 25.5, therefore median class is 145-150. $Median=I+\frac{(\frac{N}{2}-C)}{f}Xh$
160-165 5 51 N=51⇒ N/2=51/2=25.5 As 29 is just greater than 25.5, therefore median class is 145-150. Median= $I + \frac{(\frac{N}{2} - C)}{f} \times h$
N=51⇒ N/2=51/2=25.5 As 29 is just greater than 25.5, therefore median class is 145-150. Median= $I + \frac{(\frac{N}{2} - C)}{f} X h$
N/2=51/2=25.5 As 29 is just greater than 25.5, therefore median class is 145-150. Median= $I + \frac{(\frac{N}{2} - C)}{f} X h$
As 29 is just greater than 25.5, therefore median class is 145-150. Median= $I + \frac{(\frac{N}{2} - C)}{f} X h$
$Median = I + \frac{(\frac{N}{2} - C)}{f} X h$
Here, /= lower limit of median class =145
C=C.F. of the class preceding the median class =11
h= higher limit - lower limit =150−145=5
f= frequency of median class =18
∴median=
$= 145 + \frac{(25.5 - 11)}{18} \times 5$
=149.03
Mean by direct method
1
Height (in cm) ^f X _i fX _i
below 140 4 137.5 550
140-145 7 142.5 997.5
145-150 18 147.5 2655
150-155 11 152.5 1677.5
155-160 6 157.5 945 ₁
5 162.5 812.5
$\int fx$
Mean =
N
=7637.5/51
= 149.75