Class- X
 Mathematics-Basic (241)
 Marking Scheme SQP-2020-21

Max. Marks: 80
Duration:3hrs

\begin{tabular}{|c|c|c|}
\hline 1 \& \(156=2^{2} \times 3 \times 13\) \& 1 \\
\hline 2 \& \[
\begin{aligned}
\& \text { Quadratic polynomial is given by } x^{2}-(a+b) x+a b \\
\& \qquad x^{2}-2 x-8
\end{aligned}
\] \& 1 \\
\hline 3 \& \begin{tabular}{l}
HCF X LCM =product of two numbers
\[
\begin{aligned}
\& \operatorname{LCM}(96,404)=\frac{96 \times 404}{H C F(96,404)}=\frac{96 \times 404}{4} \\
\& \operatorname{LCM}=9696
\end{aligned}
\] \\
OR \\
Every composite number can be expressed (factorized) as a product of primes, and this factorization is unique, apart from the order in which the factors occur.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

1

\hline 4 \& | $\begin{aligned} & x-2 y=0 \\ & 3 x+4 y-20=0 \\ & \frac{1}{3} \neq \frac{-2}{4} \end{aligned}$ |
| :--- |
| As, $\frac{a 1}{a 2} \neq \frac{b 1}{b 2}$ is one condition for consistency. |
| Therefore, the pair of equations is consistent. | \& $1 / 2$

$1 / 2$

\hline 5 \& 1 \& 1

\hline 6 \& $$
\begin{aligned}
& \theta=60^{\circ} \\
& \text { Area of sector }=\frac{\theta}{360^{\circ}} \Pi r^{2} \\
& \begin{aligned}
A & =\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times(6)^{2} \mathrm{~cm}^{2} \\
A & =\frac{1}{6} \times \frac{22}{7} \times 36 \mathrm{~cm}^{2} \\
& =18.86 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$ \& $1 / 2$

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
OR \\
Another method- \\
Horse can graze in the field which is a circle of radius 28 cm . \\
So, required perimeter \(=2 \Pi r=2 . \Pi(28) \mathrm{cm}\)
\[
\begin{aligned}
\& =2 \times \frac{22}{7} \times(28) \mathrm{cm} \\
\& =176 \mathrm{~cm}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\) \\
\hline 7 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { By converse of Thale's theorem DE II BC } \\
\& \angle A D E=\angle A B C=70^{\circ} \\
\& \text { Given } \angle B A C=50^{\circ} \\
\& \angle A B C+\angle B A C+\angle B C A=180^{\circ} \text { (Angle sum prop of triangles) } \\
\& 70^{\circ}+50^{\circ}+\angle B C A=180^{\circ} \\
\& \angle B C A=180^{\circ}-120^{\circ}=60^{\circ}
\end{aligned}
\] \\
OR
\[
\mathrm{EC}=\mathrm{AC}-\mathrm{AE}=(7-3.5) \mathrm{cm}=3.5 \mathrm{~cm}
\]
\[
\frac{A D}{B D}=\frac{2}{3} \text { and } \frac{A E}{A C}=\frac{3.5}{3.5}=\frac{1}{1}
\] \\
So, \(\frac{A D}{B D} \neq \frac{A E}{E C}\) \\
Hence, By converse of Thale's Theorem, DE is not Parallel to BC.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$

\hline 8 \& | $\begin{aligned} \text { Length of the fence } & =\frac{\text { Total cost }}{\text { Rate }} \\ & =\frac{\text { Rs. } 5280}{\text { Rs } 24 / \text { metre }}=220 \mathrm{~m} \end{aligned}$ |
| :--- |
| So, length of fence $=$ Circumference of the field $\therefore 220 \mathrm{~m}=2 \Pi \mathrm{r}=2 \times \frac{22}{7} \times r$ |
| So, $r=\frac{220 \times 7}{2 \times 22} \mathrm{~m}=35 \mathrm{~m}$ | \& $1 / 2$

$1 / 2$

\hline 9 \& | Sol: $\tan 30^{\circ}=\frac{A B}{B C}$ $\begin{aligned} & 1 / \sqrt{ } 3=\frac{A B}{8} \\ & \mathrm{AB}=8 / \sqrt{3} \text { metres } \end{aligned}$ |
| :--- |
| Height from where it is broken is $8 / \sqrt{ } 3$ metres | \& $1 / 2$

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 10 \& \[
\begin{aligned}
\& \text { Perimeter = Area } \\
\& 2 \Pi r=\Pi r^{2} \\
\& r=2 \text { units }
\end{aligned}
\] \& 1 \\
\hline 11 \& 3 median \(=\) mode +2 mean \& 1 \\
\hline 12 \& 8 \& 1 \\
\hline 13 \& \begin{tabular}{l}
\(\frac{a 1}{a 2} \neq \frac{b 1}{b 2}\) is the condition for the given pair of equations to have unique solution.
\[
\begin{aligned}
\& \frac{4}{2} \neq \frac{p}{2} \\
\& p \neq 4
\end{aligned}
\] \\
Therefore, for all real values of \(p\) except 4 , the given pair of equations will have a unique solution. \\
OR \\
Here, \(\frac{a 1}{a 2}=\frac{2}{4}=\frac{1}{2}\)
\[
\begin{aligned}
\& \frac{b 1}{b 2}=\frac{3}{6}=\frac{1}{2} \text { and } \frac{c 1}{c 2}=\frac{5}{7} \\
\& \frac{1}{2}=\frac{1}{2} \neq \frac{5}{7}
\end{aligned}
\] \\
\(\frac{a 1}{a 2}=\frac{b 1}{b 2} \neq \frac{c 1}{c 2}\) is the condition for which the given system of equations will represent parallel lines. \\
So, the given system of linear equations will represent a pair of parallel lines.
\end{tabular} \& 1/2 \\
\hline 14 \& \begin{tabular}{l}
No. of red balls \(=3\), No.black balls \(=5\) \\
Total number of balls \(=5+3=8\) \\
Probability of red balls \(=\frac{3}{8}\) \\
OR \\
Total no of possible outcomes \(=6\) \\
There are 3 Prime numbers, 2,3,5. \\
So, Probability of getting a prime number is \(\frac{3}{6}=\frac{1}{2}\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$

\hline
\end{tabular}

15	$\begin{aligned} \tan 60^{\circ} & =\frac{h}{15} \\ \sqrt{ } 3 & =\frac{h}{15} \\ h & =15 \sqrt{ } 3 \mathrm{~m} \end{aligned}$	$1 / 2$ $1 / 2$
16	1	1
17 i)	Ans: b) Cloth material required $=2 \mathrm{XS}$ A of hemispherical dome $\begin{aligned} & =2 \times 2 \Pi \mathrm{r}^{2} \\ & =2 \times 2 \times \frac{22}{7} \times(2.5)^{2} \mathrm{~m}^{2} \\ & =78.57 \mathrm{~m}^{2} \end{aligned}$	1
ii)	a) Volume of a cylindrical pillar $=\Pi \mathrm{r}^{2} \mathrm{~h}$	1
iii)	$\text { b) } \begin{aligned} \text { Lateral surface area } & =2 \times 2 \Pi \mathrm{rh} \\ & =4 \times \frac{22}{7} \times 1.4 \times 7 \mathrm{~m}^{2} \\ & =123.2 \mathrm{~m}^{2} \end{aligned}$	1
iv)	$\text { d) } \begin{aligned} \text { Volume of hemisphere } & =\frac{2}{3} \Pi \mathrm{r}^{3} \\ & =\frac{2}{3} \frac{22}{7}(3.5)^{3} \mathrm{~m}^{3} \\ & =89.83 \mathrm{~m}^{3} \end{aligned}$	1
v)	b) Sum of the volumes of two hemispheres of radius 1 cm each $=2 \times \frac{2}{3} \Pi 1^{3}$ Volume of sphere of radius $2 \mathrm{~cm}=\frac{4}{3} \Pi 2^{3}$ So, required ratio is $\frac{2 x \frac{2}{3} \Pi 1^{3}}{\frac{4}{3} \Pi 2^{3}}=1: 8$	$1 / 2$ $1 / 2$

18 i)	c) $(0,0)$	1
ii)	a) $(4,6)$	1
iii)	a) $(6,5)$	1
iv)	a) $(16,0)$	1
v)	b) $(-12,6)$	1
19 i)	c) $90{ }^{\circ}$	1
ii)	b) SAS	1
iii)	b) $4: 9$	1
iv)	d) Converse of Pythagoras theorem	1
v)	a) $48 \mathrm{~cm}^{2}$	1
20 i)	d) parabola	1
ii)	a) 2	1
iii)	b) $-1,3$	1
iv)	c) $x^{2}-2 x-3$	1
v)	d) 0	1
21	Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the required point. Using section formula $(7,3)$ is the required point	1 1

	OR Let $P(x, y)$ be equidistant from the points $A(7,1)$ and $B(3,5)$ Given $A P=B P$. So, $A P^{2}=B P^{2}$ $\begin{aligned} & (x-7)^{2}+(y-1)^{2}=(x-3)^{2}+(y-5)^{2} \\ & x^{2}-14 x+49+y^{2}-2 y+1=x^{2}-6 x+9+y^{2}-10 y+25 \\ & \\ & x-y=2 \end{aligned}$	1
22	By BPT, $\begin{equation*} \frac{A M}{M B}=\frac{A L}{L C} \tag{1} \end{equation*}$ Also, $\frac{A N}{N D}=\frac{A L}{L C}$ By Equating (1) and (2) $\frac{A M}{M B}=\frac{A N}{N D}$	$1 / 2$ $1 / 2$
23	To prove: $A B+C D=A D+B C$. Proof: AS = AP (Length of tangents from an external point to a circle are equal) $\begin{aligned} & B Q=B P \\ & C Q=C R \\ & D S=D R \\ & A S+B Q+C Q+D S=A P+B P+C R+D R \\ & (A S+D S)+(B Q+C Q)=(A P+B P)+(C R+D R) \\ & A D+B C=A B+C D \end{aligned}$	1
24	For the correct construction	2

\begin{tabular}{|c|c|c|}
\hline 25 \& \begin{tabular}{l}
\(15 \cot A=8\), find \(\sin A\) and \(\sec A\). \(\operatorname{Cot} A=8 / 15\)
\[
\frac{A d j}{O p p o}=8 / 15
\] \\
By Pythagoras Theorem
\[
\begin{aligned}
\& A C^{2}=A B^{2}+B C^{2} \\
\& A C=\sqrt{(8 x)^{2}+(15 x)^{2}} \\
\& A C=17 \mathrm{x}
\end{aligned}
\] \\
Sin \(A=15 / 17\) \\
\(\operatorname{Cos} A=8 / 17\) \\
By Pythagoras Theorem \\
\(Q R=\sqrt{(13)^{2}-(12)^{2}} \mathrm{~cm}\) \\
\(Q R=5 \mathrm{~cm}\) \\
Tan \(P=5 / 12\) \\
\(\operatorname{Cot} R=5 / 12\) \\
Tan \(P-\operatorname{Cot} R=5 / 12-5 / 12\) \(=0\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$

\hline 26 \& $$
\begin{aligned}
& 9,17,25, \ldots \ldots . \\
& S_{n}=636 \\
& a=9 \\
& d=a_{2} \cdot a_{1} \\
& =17-9=8 \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d]
\end{aligned}
$$ \& $1 / 2$

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& $$
\begin{aligned}
& 636=\frac{n}{2}[2 \times 9+(n-1) 8] \\
& 1272=n[18+8 n-8] \\
& 1272=n[10+8 n] \\
& 8 n^{2}+10 n-1272=0 \\
& 4 n^{2}+5 n-636=0 \\
& n=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& n=\frac{-5 \pm \sqrt{5^{2}-4 \times 4 \times(-636)}}{2 \times 4} \\
& n=-\frac{-5 \pm 101}{8} \\
& n=\frac{96}{8} \\
& n=12 \\
& n=12 \quad n=\frac{-106}{8} \\
& n
\end{aligned}
$$ \& $1 / 2$

$1 / 2$

\hline 27 \& | Let $\sqrt{3}$ be a rational number. |
| :--- |
| Then $\sqrt{ } 3=p / q \quad \operatorname{HCF}(p, q)=1$ |
| Squaring both sides $\begin{gathered} (\sqrt{ } 3)^{2}=(p / q)^{2} \\ 3=p^{2} / q^{2} \\ 3 q^{2}=p^{2} \end{gathered}$ |
| 3 divides p^{2} » 3 divides p |
| 3 is a factor of p |
| Take $\mathrm{p}=3 \mathrm{C}$ $\begin{aligned} & 3 q^{2}=(3 c)^{2} \\ & 3 q^{2}=9 C^{2} \end{aligned}$ |
| 3 divides q^{2} » 3 divides q |
| 3 is a factor of q |
| Therefore 3 is a common factor of p and q |
| It is a contradiction to our assumption that p / q is rational. |
| Hence $\sqrt{ } 3$ is an irrational number. | \& 1

$1 / 2$
$1 / 2$
$1 / 2$
1

\hline 28 \& \&

\hline
\end{tabular}

	Required to prove -: $\llcorner P T Q=2\llcorner\mathrm{OPQ}$ Sol :- Let $\quad\llcorner P T Q=\theta$ Now by the theorem TP = TQ. So, TPQ is an isosceles triangle $\llcorner\mathrm{PTQ}=2\llcorner\mathrm{OPQ}$	1 1 1 $1 / 2$ $1 / 2$
29	Let Meena has received x no. of 50 re notes and y no. of 100 re notes.So, $\begin{aligned} & 50 x+100 y=2000 \\ & x+y=25 \end{aligned}$ multiply by 50 $\begin{gathered} 50 x+100 y=2000 \\ 50 x+50 y=1250 \\ -\quad-\quad- \\ \hline 50 y=750 \\ Y=15 \end{gathered}$ Putting value of $\mathrm{y}=15$ in equation (2) $\begin{aligned} & x+15=25 \\ & x=10 \end{aligned}$ Meena has received 10 pieces 50 re notes and 15 pieces of 100 re notes	1 1 1 1
30	(i) 10,11,12... 90 are two digit numbers. There are 81 numbers.So,Probability of getting a two-digit number $=81 / 90=9 / 10$ (ii) 1, 4, 9, 16, 25,36,49,64,81 are perfect squares. So, Probability of getting a perfect square number. $=9 / 90=1 / 10$ (iii) $5,10,15 \ldots .90$ are divisible by 5 . There are 18 outcomes.. So,Probability of getting a number divisible by 5 . $=18 / 90=1 / 5$	1

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
(i) Probability of getting A king of red colour.
\[
P(\text { King of red colour })=2 / 52=1 / 26
\] \\
(ii) Probability of getting A spade
\[
P(\text { a spade })=13 / 52=1 / 4
\] \\
(iii) Probability of getting The queen of diamonds \(P(a\) the queen of diamonds \()=1 / 52\)
\end{tabular} \& 1
1
1 \\
\hline 31 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{r}_{1}=6 \mathrm{~cm} \\
\& \mathrm{r}_{2}=8 \mathrm{~cm} \\
\& \mathrm{r}_{3}=10 \mathrm{~cm}
\end{aligned}
\] \\
Volume of sphere \(=4 / 3 \Pi r^{3}\) \\
Volume of the resulting sphere = Sum of the volumes of the smaller spheres.
\[
\begin{aligned}
4 / 3 \Pi r^{3} \& =4 / 3 \Pi r_{1}{ }^{3}+4 / 3 \Pi r_{2}{ }^{3}+4 / 3 \Pi r_{3}{ }^{3} \\
4 / 3 \Pi r^{3} \& =4 / 3 \Pi\left(r_{1}{ }^{3}+r_{2}{ }^{3}+r_{3}{ }^{3}\right) \\
r^{3} \& =6^{3+} 8^{3}+10^{3} \\
r^{3} \& =1728 \\
r \& =\sqrt[3]{1728} \\
r \& =12 \mathrm{~cm}
\end{aligned}
\] \\
Therefore, the radius of the resulting sphere is 12 cm .
\end{tabular} \& 1

1

\hline 32 \& | $(\sin A-\cos A+1) /(\sin A+\cos A-1)=1 /(\sec A-\tan A)$ |
| :--- |
| L.H.S. divide numerator and denominator by $\cos \mathrm{A}$ $\begin{aligned} & =(\tan A-1+\sec A) /(\tan A+1-\sec A) \\ & =(\tan A-1+\sec A) /(1-\sec A+\tan A) \end{aligned}$ |
| We know that $1+\tan ^{2} \mathrm{~A}=\sec ^{2} \mathrm{~A}$ $\begin{aligned} & \text { Or } 1=\sec ^{2} A-\tan ^{2} A=(\sec A+\tan A)(\sec A-\tan A) \\ & =(\sec A+\tan A-1) /[(\sec A+\tan A)(\sec A-\tan A)-(\sec A-\tan A)] \\ & =(\sec A+\tan A-1) /(\sec A-\tan A)(\sec A+\tan A-1) \end{aligned}$ | \& 1

1

\hline
\end{tabular}

	$=1 /(\sec A-\tan A)$, proved .	
33	Given:-	
	Speed of boat $=18 \mathrm{~km} / \mathrm{hr}$	
	Distance $=24 \mathrm{~km}$	
	Let x be the speed of stream.	1/2
	Let $t 1$ and $t 2$ be the time for upstream and downstream.	
	As we know that, $\begin{aligned} & \text { speed= distance / time } \\ & \Rightarrow \text { time= distance / speed } \end{aligned}$	
	For upstream,	$1 / 2$
	Speed $=(18-x) \mathrm{km} / \mathrm{hr}$	
	Distance $=24 \mathrm{~km}$	
	Time =t1	
	Therefore,	
	$\mathrm{t}_{1}=\frac{24}{18-x}$	
	For downstream,	
	Speed $=(18+x) k m / h r$	
	Distance $=24 \mathrm{~km}$	
	Time $=t 2$	
	Therefore,	
	$t_{2}=24$	
	$\mathrm{t}_{2}=\overline{18+x}$	
	Now according to the question-	
	$t 1=t 2+1$	
	$\frac{24}{18-x}=\frac{24}{18+x}+1$	
	$=\frac{24(18+x)-24(18-x)}{18-x)(8+x)}$	1/2
	$\Rightarrow \frac{(18-x)(18+x)}{}=1$	
	$\Rightarrow 48 x=(18-x)(18+x)$	
	$\Rightarrow 48 x=324+18 x-18 x-x^{2}$	
	$\Rightarrow x^{2}+48 x-324=0$	
	$\Rightarrow x^{2}+54 x-6 x-324=0$	
	$\Rightarrow x(x+54)-6(x+54)=0$	
	$\Rightarrow(x+54)(x-6)=0$	

34	 Let $A B$ and $C D$ be the multi-storeyed building and the building respectively. Let the height of the multi-storeyed building= $h \mathrm{~m}$ and the distance between the two buildings $=x \mathrm{~m}$. $\mathrm{AE}=\mathrm{CD}=8 \mathrm{~m}$ [Given] $B E=A B-A E=(h-8) m$ and $\mathrm{AC}=\mathrm{DE}=x \mathrm{~m} \text { [Given] }$ Also, $\angle \mathrm{FBD}=\angle \mathrm{BDE}=30^{\circ}$ (Alternate angles) $\angle \mathrm{FBC}=\angle \mathrm{BCA}=45^{\circ}$ (Alternate angles) Now, In $\triangle \mathrm{ACB}$, $\begin{align*} & \Rightarrow \tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{AC}}\left[\because \tan \theta=\frac{\text { Perpendicular }}{\text { Base }}\right] \\ & \Rightarrow 1=\frac{h}{x} \\ & \Rightarrow x=h \ldots \ldots(i) \tag{i} \end{align*}$	1/2

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Let \(A D=x m\) and \(A B=y m\). \\
Then in right \(\triangle \mathrm{ADE}, \tan 60^{\circ}=\frac{D E}{A D}\)
\[
\begin{align*}
\& \sqrt{ } 3=\frac{87}{X} \\
\& X=\frac{87}{\sqrt{3}} . \tag{i}
\end{align*}
\] \\
In right \(\triangle A B C, \tan 30^{\circ}=\frac{B C}{A B}\)
\[
\begin{align*}
\& \frac{1}{\sqrt{3}}=\frac{87}{y} \\
\& Y=87 \sqrt{ } 3 . \tag{ii}
\end{align*}
\] \\
Subtracting(i) and (ii)
\[
\begin{aligned}
\& y-x=87 \sqrt{ } 3 \quad--\frac{87}{\sqrt{3}} \\
\& y-x=\frac{87 \cdot 2 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}} \\
\& y-x=58 \sqrt{3} \mathrm{~m}
\end{aligned}
\] \\
Hence, the distance travelled by the balloon is equal to \(B D\)
\[
y-x=58 \sqrt{ } 3 \mathrm{~m}
\]
\end{tabular} \& 1
1 \\
\hline 35 \& \begin{tabular}{l}
Let \(A\) be the first term and \(D\) the common difference of A.P.
\[
\begin{align*}
\& T p=a=A+(p-1) D=(A-D)+p D \tag{1}\\
\& T q=b=A+(q-1) D=(A-D)+q D \tag{2}\\
\& T r=c=A+(r-1) D=(A-D)+r D \tag{3}
\end{align*}
\] \\
Here we have got two unknowns \(A\) and \(D\) which are to be eliminated. \\
We multiply (1),(2) and (3) by \(q-r, r-p\) and \(p-q\) respectively and add:
\[
\begin{aligned}
\& a(q-r)=(A-D)(q-r)+D p(q-r) \\
\& b(r-p)=(A-D)(r-p)+D q(r-p) \\
\& c(p-q)=(A-D)(p-q)+D r(p-q) \\
\& a(q-r)+b(r-p)+c(p-q) \\
\& =(A-D)[q-r+r-p+p-q]+D[p(q-r)+q(r-p)+r(p-q)] \\
\& =(A-D)(0)+D[p q-p r+q r-p q+r p-r q) \\
\& =0
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

1

\hline
\end{tabular}

