1. Find the adjoint of each of the following matrices:
(i) $\left[\begin{array}{cc}-3 & 5 \\ 2 & 4\end{array}\right]$
(ii) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
(iii) $\left[\begin{array}{ll}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
(iv) $\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right]$

Verify that $(\operatorname{adj} A) A=|A| I=A(\operatorname{adj} A)$ for the above matrices.

Solution:

(i) Let
$A=\left[\begin{array}{cc}-3 & 5 \\ 2 & 4\end{array}\right]$
Cofactors of A are
$\mathrm{C}_{11}=4$
$\mathrm{C}_{12}=-2$
$C_{21}=-5$
$\mathrm{C}_{22}=-3$
Since, $\operatorname{adj} A=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]^{T}$
$(\operatorname{adj} A)=\left[\begin{array}{cc}4 & -2 \\ -5 & -3\end{array}\right]^{T}$
$=\left[\begin{array}{cc}4 & -5 \\ -2 & -3\end{array}\right]$
Now, $(\operatorname{adj} \mathrm{A}) \mathrm{A}=\left[\begin{array}{cc}4 & -5 \\ -2 & -3\end{array}\right]\left[\begin{array}{cc}-3 & 5 \\ 2 & 4\end{array}\right]=\left[\begin{array}{cc}-12-10 & 20-20 \\ 6-6 & -10-12\end{array}\right]$
$(\operatorname{adj} A) A=\left[\begin{array}{cc}-22 & 0 \\ 0 & -22\end{array}\right]$
And, $|A|\left|=\left|\begin{array}{cc}-3 & 5 \\ 2 & 4\end{array}\right|\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=(-22)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-22 & 0 \\ 0 & -22\end{array}\right]\right.$

Also, $A(\operatorname{adj} A)=\left[\begin{array}{cc}-3 & 5 \\ 2 & 4\end{array}\right]\left[\begin{array}{cc}4 & -5 \\ -2 & -3\end{array}\right]=\left[\begin{array}{cc}-12-10 & 20-20 \\ 6-6 & -10-12\end{array}\right]$
$A(\operatorname{adj} A)=\left[\begin{array}{cc}-22 & 0 \\ 0 & -22\end{array}\right]$
Hence, $(\operatorname{adj} A) A=|A| I=A(\operatorname{adj} A)$
(ii) Let
$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
Therefore cofactors of A are
$\mathrm{C}_{11}=\mathrm{d}$
$\mathrm{C}_{12}=-\mathrm{c}$
$\mathrm{C}_{21}=-\mathrm{b}$
$\mathrm{C}_{22}=\mathrm{a}$
We know that, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{ll}\mathrm{C}_{11} & \mathrm{C}_{12} \\ \mathrm{C}_{21} & \mathrm{C}_{22}\end{array}\right]^{\mathrm{T}}$
Therefore by substituting these values we get,
$(\operatorname{adj} \mathrm{A})=\left[\begin{array}{cc}\mathrm{d} & -\mathrm{c} \\ -\mathrm{b} & \mathrm{a}\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{cc}\mathrm{d} & -\mathrm{b} \\ -\mathrm{c} & \mathrm{a}\end{array}\right]$
Now, $(\operatorname{adj} A) A=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}a d-b c & b d-b d \\ -a c+a c & -b c+a d\end{array}\right]$
$(\operatorname{adj} A) A=\left[\begin{array}{cc}a d-b c & 0 \\ 0 & a d-b c\end{array}\right]$
And, $|\mathrm{A}| . \mathrm{I}=\left|\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{C} & \mathrm{d}\end{array}\right|\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=(\mathrm{ad}-\mathrm{bc})\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\mathrm{ad}-\mathrm{bc} & 0 \\ 0 & \mathrm{ad}-\mathrm{bc}\end{array}\right]$

Also,
$A(\operatorname{adj} A)=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]=\left[\begin{array}{cc}a d-b c & 0 \\ 0 & a d-b c\end{array}\right]$
Hence, $(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}=\mathrm{A}(\operatorname{adj} \mathrm{A})$
(iii) Let
$\mathrm{A}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
Therefore cofactors of A are
$\mathrm{C}_{11}=\cos \alpha$
$\mathrm{C}_{12}=-\sin \alpha$
$\mathrm{C}_{21}=-\sin \alpha$
$\mathrm{C}_{22}=\cos \alpha$
We know that, $\operatorname{adj} A=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]^{T}$
$(\operatorname{adj} A)=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]^{T}$
$=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
Now, (adj A) A $=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$=\left[\begin{array}{cc}-\sin ^{2} \alpha+\cos ^{2} \alpha & \cos \alpha \cdot \sin \alpha-\sin \alpha \cdot \cos \alpha \\ -\cos \alpha \sin \alpha+\sin \alpha \cos \alpha & -\sin ^{2} \alpha+\cos ^{2} \alpha\end{array}\right]$
$(\operatorname{adj} \mathrm{A}) \mathrm{A}=\left[\begin{array}{cc}\cos 2 \alpha & 0 \\ 0 & \cos 2 \alpha\end{array}\right]$
And, $|A|\left|=\left|\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right|\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right.$

$$
\begin{aligned}
& =\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \alpha-\sin ^{2} \alpha & 0 \\
0 & \cos ^{2} \alpha-\sin ^{2} \alpha
\end{array}\right]
\end{aligned}
$$

$=\left[\begin{array}{cc}\cos 2 \alpha & 0 \\ 0 & \cos 2 \alpha\end{array}\right]$
Also, A (adj A)

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]=\left[\begin{array}{cc}
\cos ^{2} \alpha-\sin ^{2} \alpha & 0 \\
0 & \cos ^{2} \alpha-\sin ^{2} \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos 2 \alpha & 0 \\
0 & \cos 2 \alpha
\end{array}\right]
\end{aligned}
$$

Hence, $(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}=\mathrm{A}(\operatorname{adj} \mathrm{A})$
(iv) Let
$A=\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right]$
Therefore cofactors of A are
$\mathrm{C}_{11}=1$
$\mathrm{C}_{12}=\tan \alpha / 2$
$\mathrm{C}_{21}=-\tan \alpha / 2$
$\mathrm{C}_{22}=1$
We know that, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{ll}\mathrm{C}_{11} & \mathrm{C}_{12} \\ \mathrm{C}_{21} & \mathrm{C}_{22}\end{array}\right]^{\mathrm{T}}$
$(\operatorname{adj} A)=\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{cc}1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1\end{array}\right]$
Now, $(\operatorname{adj} A) A=\left[\begin{array}{cc}1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right]$
$=\left[\begin{array}{cc}1+\tan ^{2} \frac{\alpha}{2} & \tan \frac{\alpha}{2}-\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2}-\tan \frac{\alpha}{2} & 1+\tan ^{2} \frac{\alpha}{2}\end{array}\right]$
$(\operatorname{adj} \mathrm{A}) \mathrm{A}=\left[\begin{array}{cc}1+\tan ^{2} \frac{\alpha}{2} & 0 \\ 0 & 1+\tan ^{2} \frac{\alpha}{2}\end{array}\right]$
And, $|\mathrm{A}| . \mathrm{I}=\left|\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right|\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left(1+\tan ^{2} \frac{\alpha}{2}\right)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{cc}1+\tan ^{2} \frac{\alpha}{2} & 0 \\ 0 & 1+\tan ^{2} \frac{\alpha}{2}\end{array}\right]$
Also, $A(\operatorname{adj} A)=\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right]\left[\begin{array}{cc}1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1\end{array}\right]$

$$
=\left[\begin{array}{cc}
1+\tan ^{2} \frac{\alpha}{2} & \tan \frac{\alpha}{2}-\tan \frac{\alpha}{2} \\
\tan \frac{\alpha}{2}-\tan \frac{\alpha}{2} & 1+\tan ^{2} \frac{\alpha}{2}
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
1+\tan ^{2} \frac{\alpha}{2} & 0 \\
0 & 1+\tan ^{2} \frac{\alpha}{2}
\end{array}\right]
$$

Hence, $(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}=\mathrm{A}(\operatorname{adj} \mathrm{A})$
2. Compute the adjoint of each of the following matrices.
(i) $\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$
(ii) $\left[\begin{array}{ccc}1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{array}\right]$
(iii) $\left[\begin{array}{ccc}2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1\end{array}\right]$
(iv) $\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{array}\right]$

Solution:

(i) Let
$A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$
Therefore cofactors of A are
$\mathrm{C}_{11}=-3$
$C_{21}=2$
$C_{31}=2$
$\mathrm{C}_{12}=2$
$C_{22}=-3$
$\mathrm{C}_{23}=2$
$\mathrm{C}_{13}=2$
$C_{23}=2$
$\mathrm{C}_{33}=-3$
$\operatorname{adj} A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}-3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3\end{array}\right]$
Now, $(\operatorname{adj} A) A=\left[\begin{array}{ccc}-3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}-3+4+4 & -6+2+4 & -6+4+2 \\ 2-3+4 & 4-3+4 & 4-6+2 \\ 2+4-6 & 4+2-6 & 4+4-3\end{array}\right]$
$=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]$
Also, $|\mathrm{A}| \mathrm{I}=\left|\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right|\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=(-3+4+4)\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]$
Then, $A(\operatorname{adj} A)=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\left[\begin{array}{ccc}-3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3\end{array}\right]$
$=\left[\begin{array}{ccc}-3+4+4 & -6+2+4 & -6+4+2 \\ 2-3+4 & 4-3+4 & 4-6+2 \\ 2+4-6 & 4+2-6 & 4+4-3\end{array}\right]$
$=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]$
Since, $(\operatorname{adj} A) A=|A| I=A(\operatorname{adj} A)$
(ii) Let
$A=\left[\begin{array}{ccc}1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{array}\right]$
Cofactors of A
$\mathrm{C}_{11}=2$
$\mathrm{C}_{21}=3$
$C_{31}=-13$
$C_{12}=-3$
$C_{22}=6$
$C_{32}=9$
$\mathrm{C}_{13}=5$
$C_{23}=-3$
$\mathrm{C}_{33}=-1$
$\operatorname{adj} \mathrm{A}=\left[\begin{array}{lll}\mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} \\ \mathrm{C}_{21} & \mathrm{C}_{22} & \mathrm{C}_{23} \\ \mathrm{C}_{31} & \mathrm{C}_{32} & \mathrm{C}_{33}\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 6 & -3 \\ -13 & 9 & -1\end{array}\right]^{\mathrm{T}}$
$\operatorname{adj} A=\left[\begin{array}{ccc}2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1\end{array}\right]$
Now, (adj A) A $=\left[\begin{array}{ccc}2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}2+6+13 & 4+9-13 & 10+3-13 \\ -3+12-9 & -6+18+9 & -15+6+9 \\ 5-6+1 & 10-9-1 & 25-3-1\end{array}\right]$
$=\left[\begin{array}{ccc}21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21\end{array}\right]$
Also, $|\mathrm{A}| \mathrm{I}=\left|\begin{array}{ccc}1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{array}\right|\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=[1(3-1)-2(2+1)+5(2+3)]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=21\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21\end{array}\right]$

Then, $A(\operatorname{adj} A)=\left[\begin{array}{ccc}1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1\end{array}\right]$
$=\left[\begin{array}{ccc}2-6+25 & 3+12-15 & -13+18-5 \\ 4-9+5 & 6+18-3 & -26+27-1 \\ -2-3+5 & -3+6-3 & 13+9-1\end{array}\right]$
$=\left[\begin{array}{ccc}21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21\end{array}\right]$
Hence, $(\operatorname{adj} A) A=|A| I=A(\operatorname{adj} A)$
(iii) Let
$\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1\end{array}\right]$
Therefore cofactors of A
$\mathrm{C}_{11}=-22$
$\mathrm{C}_{21}=11$
$\mathrm{C}_{31}=-11$
$\mathrm{C}_{12}=4$
$\mathrm{C}_{22}=-2$
$\mathrm{C}_{32}=2$
$\mathrm{C}_{13}=16$
$\mathrm{C}_{23}=-8$
$\mathrm{C}_{33}=8$
We know that adj $\mathrm{A}=\left[\begin{array}{lll}\mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} \\ \mathrm{C}_{21} & \mathrm{C}_{22} & \mathrm{C}_{23} \\ \mathrm{C}_{31} & \mathrm{C}_{32} & \mathrm{C}_{33}\end{array}\right]^{\mathrm{T}}$
Now by substituting the values in above matrix we get,
$=\left[\begin{array}{ccc}-22 & 4 & 16 \\ 11 & -2 & -8 \\ -11 & 2 & 8\end{array}\right]^{\mathrm{T}}$
$\operatorname{adj} A=\left[\begin{array}{ccc}-22 & 11 & -11 \\ 4 & -2 & 2 \\ 16 & -8 & 8\end{array}\right]$
Now, $(\operatorname{adj} A) A=\left[\begin{array}{ccc}-22 & 11 & -11 \\ 4 & -2 & 2 \\ 16 & -8 & 8\end{array}\right]\left[\begin{array}{ccc}2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1\end{array}\right]$
$=\left[\begin{array}{ccc}-44+44+0 & 22+22-44 & -66+55+11 \\ 8-8+0 & -4-4+8 & 12-10-2 \\ 32-32+0 & -16-16+32 & 48-40--8\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Now, $|\mathrm{A}| \mathrm{I}=\left|\begin{array}{ccc}2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1\end{array}\right|\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=[2(-2-20)+1(-4-0)+3(16-0)]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=(-44-4+48)\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Then, $A(\operatorname{adj} A)=\left[\begin{array}{ccc}2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1\end{array}\right]\left[\begin{array}{ccc}-22 & 11 & -11 \\ 4 & -2 & 2 \\ 16 & -8 & 8\end{array}\right]$
$=\left[\begin{array}{ccc}-44-4+48 & 22+2-24 & -22-2+24 \\ -88+8+80 & 44-4-40 & -44+4+40 \\ 0+16-16 & 0-8+8 & 0+8-8\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Hence, $(\operatorname{adj} A) A=|A| I=A(\operatorname{adj} A)$
(iv) Let
$A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{array}\right]$
Therefore cofactors of A
$\mathrm{C}_{11}=3$
$\mathrm{C}_{21}=-1$
$C_{31}=1$
$C_{12}=-15$
$\mathrm{C}_{22}=7$
$C_{32}=-5$
$\mathrm{C}_{13}=4$
$\mathrm{C}_{23}=-2$
$\mathrm{C}_{33}=2$
$\operatorname{adj} A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}3 & -15 & 4 \\ -3 & 7 & -2 \\ 1 & -5 & 2\end{array}\right]^{\mathrm{T}}$
$\operatorname{adj} A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 7 & -5 \\ 4 & -2 & 2\end{array}\right]$
Now, $(\operatorname{adj} A) A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 7 & -5 \\ 4 & -2 & 2\end{array}\right]\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{array}\right]$
$=\left[\begin{array}{clc}6-5+1 & 0-1+1 & -3+0+3 \\ -30+35-5 & 0+7-5 & 15-0-15 \\ 8-10+2 & 0-2+2 & -4-0+6\end{array}\right]$
$=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
Also, $|\mathrm{A}| \mathrm{I}=\left|\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{array}\right|\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=[2(3-0)+0(15-0)-1(5-1)]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=(6-4)\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
Then, $A(\operatorname{adj} A)=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{array}\right]\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 7 & -5 \\ 4 & -2 & 2\end{array}\right]$
$=\left[\begin{array}{ccc}6+0-4 & -2+0+2 & 2-0-2 \\ 15-15+0 & -5+7+0 & 5-5+0 \\ 3-15+12 & -1+7-6 & 1-5+6\end{array}\right]$
$=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
Hence, $(\operatorname{adj} A) A=|A| I=A(\operatorname{adj} A)$
3. For the matrix $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 3 & 0 \\ 18 & 2 & 10\end{array}\right]$, show that $A(\operatorname{adj} A)=0$

Solution:

Given
$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 3 & 0 \\ 18 & 2 & 10\end{array}\right]$
Therefore cofactors of A
$\mathrm{C}_{11}=30$
$\mathrm{C}_{21}=12$
$C_{31}=-3$
$C_{12}=-20$
$\mathrm{C}_{22}=-8$
$C_{32}=2$
$C_{13}=-50$
$C_{23}=-20$
$\mathrm{C}_{33}=5$
We know that adj $A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}$
By substituting these values in above matrix we get,
$=\left[\begin{array}{ccc}30 & -20 & -50 \\ 12 & -8 & -20 \\ -3 & 2 & 5\end{array}\right]^{\mathrm{T}}$
So, adj $(A)=\left[\begin{array}{ccc}30 & 12 & -3 \\ -20 & -8 & 2 \\ -50 & -20 & 5\end{array}\right]$
Now, $A(\operatorname{adj} A)=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 3 & 0 \\ 18 & 2 & 10\end{array}\right]\left[\begin{array}{ccc}30 & 12 & -3 \\ -20 & -8 & 2 \\ -50 & -20 & 5\end{array}\right]$
$=\left[\begin{array}{ccc}30+20-50 & 12+8-20 & -3-2+5 \\ 60-60+0 & 24-24+0 & -6+6+0 \\ 540-40-500 & 216-16-200 & -54+4+50\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Hence, $\mathrm{A}(\operatorname{adj} \mathrm{A})=0$
4. If $A=\left[\begin{array}{ccc}-4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{array}\right]$, show that adj $A=A$

Solution:

Given
$A=\left[\begin{array}{ccc}-4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{array}\right]$
Cofactors of A
$C_{11}=-4$
$C_{21}=-3$
$\mathrm{C}_{31}=-3$
$\mathrm{C}_{12}=1$
$C_{22}=0$
$C_{32}=1$
$\mathrm{C}_{13}=4$
$C_{23}=4$
$C_{33}=3$
We know that adj $A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}$
$=\left[\begin{array}{lll}-4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3\end{array}\right]^{\mathrm{T}}$
So, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}-4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{array}\right]$
Hence, $\operatorname{adj} \mathrm{A}=\mathrm{A}$
5. If $A=\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$, show that adj $A=3 \boldsymbol{A}^{T}$.

Solution:

Given
$\mathrm{A}=\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$
Cofactors of A are
$\mathrm{C}_{11}=-3$
$\mathrm{C}_{21}=6$
$\mathrm{C}_{31}=6$
$\mathrm{C}_{12}=-6$
$\mathrm{C}_{22}=3$
$\mathrm{C}_{32}=-6$
$\mathrm{C}_{13}=-6$
$\mathrm{C}_{23}=-6$
$\mathrm{C}_{33}=3$
$\operatorname{adj} A=\left[\begin{array}{lll}\mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} \\ \mathrm{C}_{21} & \mathrm{C}_{22} & \mathrm{C}_{23} \\ \mathrm{C}_{31} & \mathrm{C}_{32} & \mathrm{C}_{33}\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{ccc}-3 & -6 & -6 \\ 6 & 3 & -6 \\ 6 & -6 & 3\end{array}\right]^{\mathrm{T}}$
So, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}-3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3\end{array}\right]$
Now, $3 A^{\top}=3\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]=\left[\begin{array}{ccc}-3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3\end{array}\right]$
Hence, $\operatorname{adj} \mathrm{A}=3 . \mathrm{A}^{\top}$
6. Find $A(\operatorname{adj} A)$ for the matrix $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & 2 & -1 \\ -4 & 5 & 2\end{array}\right]$

Solution:

Given
$\mathrm{A}=\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & 2 & -1 \\ -4 & 5 & 2\end{array}\right]$
Cofactors of A are
$\mathrm{C}_{11}=9$
$\mathrm{C}_{21}=19$
$\mathrm{C}_{31}=-4$
$\mathrm{C}_{12}=4$
$\mathrm{C}_{22}=14$
$\mathrm{C}_{32}=1$
$\mathrm{C}_{13}=8$
$\mathrm{C}_{23}=3$
$\mathrm{C}_{33}=2$
We know that adj $A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}9 & 4 & 8 \\ 19 & 14 & 3 \\ -4 & 1 & 2\end{array}\right]^{\mathrm{T}}$
So, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}9 & 19 & -4 \\ 4 & 14 & 1 \\ 8 & 3 & 2\end{array}\right]$
Now, A adj $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & 2 & -1 \\ -4 & 5 & 2\end{array}\right]\left[\begin{array}{ccc}9 & 19 & -4 \\ 4 & 14 & 1 \\ 8 & 3 & 2\end{array}\right]$
$=\left[\begin{array}{ccc}9-8+24 & 19-28+9 & -4-2+6 \\ 0+8-8 & 0+28-3 & 0+2-2 \\ -36+20+16 & -76+70+6 & 16+5+4\end{array}\right]$

$$
=\left[\begin{array}{ccc}
25 & 0 & 0 \\
0 & 25 & 0 \\
0 & 0 & 25
\end{array}\right]
$$

Hence, $\mathrm{A} \operatorname{adj} \mathrm{A}=25 \mathrm{I}_{3}$
7. Find the inverse of each of the following matrices:
(i) $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
(ii) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(iii) $\left[\begin{array}{cc}a & b \\ c & \frac{1+b c}{a}\end{array}\right]$
(iv) $\left[\begin{array}{cc}2 & 5 \\ -3 & 1\end{array}\right]$

Solution:

(i) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
Now, $|A|=\cos \theta(\cos \theta)+\sin \theta(\sin \theta)$
$=1$
Hence, A^{-1} exists.
Cofactors of A are
$\mathrm{C}_{11}=\cos \theta$
$\mathrm{C}_{12}=\sin \theta$
$\mathrm{C}_{21}=-\sin \theta$
$\mathrm{C}_{22}=\cos \theta$
Since, $\operatorname{adj} A=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]^{T}$
$(\operatorname{adj} A)=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
Now, $\mathrm{A}^{-1}=\frac{\frac{1}{|A|}}{}$.adj A

$$
\begin{aligned}
& A^{-1}=\frac{1}{1}\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
\end{aligned}
$$

(ii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
Now, $|A|=-1 \neq 0$
Hence, A^{-1} exists.
Cofactors of A are
$\mathrm{C}_{11}=0$
$\mathrm{C}_{12}=-1$
$C_{21}=-1$
$\mathrm{C}_{22}=0$
Since, $\operatorname{adj} A=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]^{T}$
$(\operatorname{adj} A)=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]^{T}$
$=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$
Now, $A^{-1}=\frac{1}{|A|} \operatorname{adj} A$

$$
A^{-1}=\frac{1}{-1}\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

$$
A^{-1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

(iii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

Now, $|A|=\frac{a+a b c}{a}-{ }_{b c}=\frac{a+a b c-a b c}{a}=1 \neq 0$
Hence, A^{-1} exists.
Cofactors of A are
$\mathrm{C}_{11}=\frac{1+\mathrm{bc}}{\mathrm{a}}$
$\mathrm{C}_{12}=-\mathrm{C}$
$C_{21}=-b$
$\mathrm{C}_{22}=\mathrm{a}$
Since, $\operatorname{adj} A=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]^{T}$

$$
(\operatorname{adj} A)=\left[\begin{array}{cc}
\frac{1+b c}{a} & -c \\
-b & a
\end{array}\right]^{T}
$$

$$
=\left[\begin{array}{cc}
\frac{1+b c}{a} & -b \\
-c & a
\end{array}\right]
$$

Now, $A^{-1}=\frac{1}{|A|} \operatorname{adj} A$

$$
A^{-1}=\frac{1}{1}\left[\begin{array}{cc}
\frac{1+b c}{a} & -b \\
-c & a
\end{array}\right]
$$

$$
A^{-1}=\left[\begin{array}{cc}
\frac{1+b c}{a} & -b \\
-c & a
\end{array}\right]
$$

(iv) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
Now, $|A|=2+15=17 \neq 0$
Hence, A^{-1} exists.
Cofactors of A are
$\mathrm{C}_{11}=1$
$\mathrm{C}_{12}=3$
$\mathrm{C}_{21}=-5$
$\mathrm{C}_{22}=2$
Since, $\operatorname{adj} A=\left[\begin{array}{ll}\mathrm{C}_{11} & \mathrm{C}_{12} \\ \mathrm{C}_{21} & \mathrm{C}_{22}\end{array}\right]^{\mathrm{T}}$
$(\operatorname{adj} A)=\left[\begin{array}{cc}1 & 3 \\ -5 & 2\end{array}\right]^{T}$
$=\left[\begin{array}{cc}1 & -5 \\ 3 & 2\end{array}\right]$
Now, $\mathrm{A}^{-1}=\frac{1}{\mid \overrightarrow{|A|}} . \operatorname{adj} \mathrm{A}$
$A^{-1}=\frac{1}{17}\left[\begin{array}{cc}1 & -5 \\ 3 & 2\end{array}\right]$

8. Find the inverse of each of the following matrices.

(i) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right]$
(ii) $\left[\begin{array}{ccc}1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1\end{array}\right]$
(iii) $\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
(iv) $\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$
(v) $\left[\begin{array}{ccc}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$
(vi) $\left[\begin{array}{ccc}0 & 0 & -1 \\ 3 & 4 & 5 \\ -2 & -4 & -7\end{array}\right]$
(vii) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$

Solution:

(i) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
$|A|=1\left|\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right|-2\left|\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right|+3\left|\begin{array}{ll}2 & 3 \\ 3 & 1\end{array}\right|$
$=1(6-1)-2(4-3)+3(2-9)$
$=5-2-21$
$=-18 \neq 0$
Hence, A^{-1} exists
Cofactors of A are
$\mathrm{C}_{11}=5$
$\mathrm{C}_{21}=-1$
$\mathrm{C}_{31}=-7$
$C_{12}=-1$
$C_{22}=-7$
$\mathrm{C}_{32}=5$
$\mathrm{C}_{13}=-7$
$C_{23}=5$
$C_{33}=-1$
We know that adj $A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}5 & -1 & -7 \\ -1 & -7 & 5 \\ -7 & 5 & -1\end{array}\right]^{\mathrm{T}}$
So, adj $A=\left[\begin{array}{ccc}5 & -1 & -7 \\ -1 & -7 & 5 \\ -7 & 5 & -1\end{array}\right]$

Now, $A^{-1}=\frac{1}{|A|} \operatorname{adj} A$
So, $A^{-1}=\frac{1}{(-18)}\left[\begin{array}{ccc}5 & -1 & -7 \\ -1 & -7 & 5 \\ -7 & 5 & -1\end{array}\right]$
Hence, $\quad A^{-1}=\left[\begin{array}{ccc}\frac{-5}{18} & \frac{1}{18} & \frac{7}{18} \\ \frac{1}{18} & \frac{7}{18} & \frac{-5}{18} \\ \frac{7}{18} & \frac{-5}{18} & \frac{1}{18}\end{array}\right]$
(ii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
$|A|=1\left|\begin{array}{cc}-1 & -1 \\ 3 & -1\end{array}\right|-2\left|\begin{array}{cc}1 & -1 \\ 2 & -1\end{array}\right|+5\left|\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right|$
$=1(1+3)-2(-1+2)+5(3+2)$
$=4-2+25$
$=27 \neq 0$
Hence, A^{-1} exists
Cofactors of A are
$\mathrm{C}_{11}=4$
$C_{21}=17$
$C_{31}=3$
$\mathrm{C}_{12}=-1$
$C_{22}=-11$
$C_{32}=6$
$\mathrm{C}_{13}=5$
$C_{23}=1$
$\mathrm{C}_{33}=-3$
$\operatorname{adj} A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}$

$$
=\left[\begin{array}{ccc}
4 & -1 & 5 \\
17 & -11 & 1 \\
3 & 6 & -3
\end{array}\right]^{\mathrm{T}}
$$

So, adj $A=\left[\begin{array}{ccc}4 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3\end{array}\right]$
Now, $A^{-1}=\frac{1}{|A|} \operatorname{adj} A$
So, $A^{-1}=\frac{1}{(27)}\left[\begin{array}{ccc}4 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3\end{array}\right]$
Hence, $A^{-1}=\left[\begin{array}{ccc}\frac{4}{27} & \frac{17}{27} & \frac{3}{27} \\ \frac{-1}{27} & \frac{-11}{27} & \frac{6}{27} \\ \frac{5}{27} & \frac{1}{27} & \frac{-3}{27}\end{array}\right]=\left[\begin{array}{ccc}\frac{4}{27} & \frac{17}{27} & \frac{1}{9} \\ \frac{-1}{27} & \frac{-11}{27} & \frac{2}{9} \\ \frac{5}{27} & \frac{1}{27} & \frac{-1}{9}\end{array}\right]$
(iii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
$|A|=2\left|\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right|+1\left|\begin{array}{cc}-1 & -1 \\ 1 & 2\end{array}\right|+1\left|\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right|$
$=2(4-1)+1(-2+1)+1(1-2)$
$=6-2$
$=-4 \neq 0$
Hence, A^{-1} exists
Cofactors of A are
$\mathrm{C}_{11}=3$
$C_{21}=1$
$\mathrm{C}_{31}=-1$
$\mathrm{C}_{12}=+1$
$C_{22}=3$
$C_{32}=1$
$\mathrm{C}_{13}=-1$
$C_{23}=1$
$C_{33}=3$
We know that adj $A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ \mathrm{C}_{21} & \mathrm{C}_{22} & \mathrm{C}_{23} \\ \mathrm{C}_{31} & \mathrm{C}_{32} & \mathrm{C}_{33}\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]^{\mathrm{T}}$
So, $\operatorname{adj} A=\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$
Now, $A^{-1}=\frac{1}{|A|} \operatorname{adj} A$
So, $A^{-1}=\frac{1}{4}\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$
Hence, $A^{-1}=\left[\begin{array}{ccc}\frac{3}{4} & \frac{1}{4} & \frac{-1}{4} \\ \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ \frac{-1}{4} & \frac{1}{4} & \frac{1}{4}\end{array}\right]$
(iv) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
$|A|=2\left|\begin{array}{ll}1 & 0 \\ 1 & 3\end{array}\right|-0\left|\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right|-1\left|\begin{array}{ll}5 & 1 \\ 0 & 1\end{array}\right|$
$=2(3-0)-0-1(5)$
$=6-5$
= $1 \neq 0$
Hence, A^{-1} exists
Cofactors of A are
$\mathrm{C}_{11}=3$
$\mathrm{C}_{21}=-1$
$\mathrm{C}_{31}=1$
$C_{12}=-15$
$C_{22}=6$
$\mathrm{C}_{32}=-5$
$\mathrm{C}_{13}=5$
$C_{23}=-2$
$C_{33}=2$
We know that adj $A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}3 & -15 & 5 \\ -1 & 6 & -2 \\ 1 & -5 & 2\end{array}\right]^{\mathrm{T}}$
So, $\operatorname{adj} A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$
Now, $A^{-1}=\frac{1}{|A|} \operatorname{adj} A$
So, $A^{-1}=\frac{1}{1}\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$
Hence, $A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$
(v) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
$|A|={ }^{0}\left|\begin{array}{ll}-3 & 0 \\ -3 & 4\end{array}\right|-1\left|\begin{array}{ll}4 & 4 \\ 3 & 4\end{array}\right|-1\left|\begin{array}{ll}4 & -3 \\ 3 & -3\end{array}\right|$
$=0-1(16-12)-1(-12+9)$
$=-4+3$
$=-1 \neq 0$
Hence, A^{-1} exists
Cofactors of A are
$\mathrm{C}_{11}=0$
$\mathrm{C}_{21}=-1$
$\mathrm{C}_{31}=1$
$\mathrm{C}_{12}=-4$
$\mathrm{C}_{22}=3$
$\mathrm{C}_{32}=-4$
$\mathrm{C}_{13}=-3$
$\mathrm{C}_{23}=3$
$C_{33}=-4$
We know that adj $A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}0 & -4 & -3 \\ -1 & 3 & 3 \\ 1 & -4 & -4\end{array}\right]^{\mathrm{T}}$
So, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}0 & -1 & 1 \\ -4 & 3 & -4 \\ -3 & 3 & -4\end{array}\right]$
Now, $A^{-1}=\frac{1}{|A|} \operatorname{adj} \mathrm{A}$
So, $\mathrm{A}^{-1}=\frac{1}{-1}\left[\begin{array}{ccc}0 & -1 & 1 \\ -4 & 3 & -4 \\ -3 & 3 & -4\end{array}\right]$
Hence, $\mathrm{A}^{-1}=\left[\begin{array}{ccc}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$
(vi) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
$|A|={ }^{0}\left|\begin{array}{cc}4 & 5 \\ -4 & -7\end{array}\right|-0\left|\begin{array}{cc}3 & 5 \\ -2 & -7\end{array}\right|-1\left|\begin{array}{cc}3 & 4 \\ -2 & -4\end{array}\right|$
$=0-0-1(-12+8)$
$=4 \neq 0$
Hence, A^{-1} exists
Cofactors of A are
$\mathrm{C}_{11}=-8$
$\mathrm{C}_{21}=4$
$\mathrm{C}_{31}=4$
$\mathrm{C}_{12}=11$
$\mathrm{C}_{22}=-2$
$\mathrm{C}_{32}=-3$
$\mathrm{C}_{13}=-4$
$\mathrm{C}_{23}=0$
$\mathrm{C}_{33}=0$
We know that adj $A=\left[\begin{array}{lll}\mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} \\ \mathrm{C}_{21} & \mathrm{C}_{22} & \mathrm{C}_{23} \\ \mathrm{C}_{31} & \mathrm{C}_{32} & \mathrm{C}_{33}\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{ccc}8 & 11 & -4 \\ 4 & -2 & 0 \\ 4 & -3 & 0\end{array}\right]^{\mathrm{T}}$
So, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}8 & 4 & 4 \\ 11 & -2 & -3 \\ -4 & 0 & 0\end{array}\right]$
Now, $A^{-1}=\frac{1}{|A|} \operatorname{adj} \mathrm{A}$
So, $A^{-1}=\frac{1}{4}\left[\begin{array}{ccc}8 & 4 & 4 \\ 11 & -2 & -3 \\ -4 & 0 & 0\end{array}\right]$
Hence, $A^{-1}=\left[\begin{array}{ccc}2 & 1 & 1 \\ \frac{11}{4} & \frac{-1}{2} & \frac{-3}{4} \\ -1 & 0 & 0\end{array}\right]$
(vii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
$|A|=1\left|\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha\end{array}\right|_{-0+0}$
$=-\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)$
$=-1 \neq 0$
Hence, A^{-1} exists
Cofactors of A are
$\mathrm{C}_{11}=-1$
$\mathrm{C}_{21}=0$
$\mathrm{C}_{31}=0$
$\mathrm{C}_{12}=0$
$\mathrm{C}_{22}=-\cos \alpha$
$\mathrm{C}_{32}=-\sin \alpha$
$\mathrm{C}_{13}=0$
$\mathrm{C}_{23}=-\sin \alpha$
$\mathrm{C}_{33}=\cos \alpha$
We know that adj $A=\left[\begin{array}{lll}\mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} \\ \mathrm{C}_{21} & \mathrm{C}_{22} & \mathrm{C}_{23} \\ \mathrm{C}_{31} & \mathrm{C}_{32} & \mathrm{C}_{33}\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]^{\mathrm{T}}$
So, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]$
Now, $A^{-1}=\frac{1}{|A|} \operatorname{adj} \mathrm{A}$
So, $\mathrm{A}^{-1}=\frac{1}{-1}\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]$
Hence, $\mathrm{A}^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$
9. Find the inverse of each of the following matrices and verify that $A^{-1} A=I_{3}$.
(i) $\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$
(ii) $\left[\begin{array}{lll}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]$

Solution:

(i) We have
$|\mathrm{A}|=1\left|\begin{array}{ll}4 & 3 \\ 3 & 4\end{array}\right|-3\left|\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right|+3\left|\begin{array}{ll}1 & 4 \\ 1 & 3\end{array}\right|$
$=1(16-9)-3(4-3)+3(3-4)$
$=7-3-3$
$=1 \neq 0$
Hence, A^{-1} exists
Cofactors of A are
$\mathrm{C}_{11}=7$
$\mathrm{C}_{21}=-3$
$\mathrm{C}_{31}=-3$
$\mathrm{C}_{12}=-1$
$\mathrm{C}_{22}=1$
$\mathrm{C}_{32}=0$
$\mathrm{C}_{13}=-1$
$\mathrm{C}_{23}=0$
$\mathrm{C}_{33}=1$
We know that adj $A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}7 & -1 & -1 \\ -3 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]^{T}$
So, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$

Now, $A^{-1}=\frac{1}{|A|} \operatorname{adj} \mathrm{A}=\frac{1}{1}\left[\begin{array}{ccc}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$
Also, $\mathrm{A}^{-1} \mathrm{~A}=\left[\begin{array}{ccc}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$

$$
=\left[\begin{array}{ccc}
7-3-3 & 21-12-9 & 21-9-12 \\
-1+1+0 & -3+4+0 & -3+3+0 \\
-1+0+1 & -3+0+3 & -3+0+4
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Hence, $A^{-1} A=I_{3}$
(ii) We have
$|\mathrm{A}|=2\left|\begin{array}{ll}4 & 1 \\ 7 & 2\end{array}\right|-3\left|\begin{array}{ll}3 & 1 \\ 3 & 2\end{array}\right|+1\left|\begin{array}{ll}3 & 4 \\ 3 & 7\end{array}\right|$
$=2(8-7)-3(6-3)+1(21-12)$
$=2-9+9$
$=2 \neq 0$
Hence, A^{-1} exists
Cofactors of A are
$\mathrm{C}_{11}=1$
$\mathrm{C}_{21}=1$
$\mathrm{C}_{31}=-1$
$\mathrm{C}_{12}=-3$
$\mathrm{C}_{22}=1$
$\mathrm{C}_{32}=1$
$\mathrm{C}_{13}=9$
$\mathrm{C}_{23}=-5$
$\mathrm{C}_{33}=-1$

We know that adj $A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}1 & -3 & 9 \\ 1 & 1 & -5 \\ -1 & 1 & -1\end{array}\right]^{\mathrm{T}}$
So, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}1 & 1 & -1 \\ -3 & 1 & 1 \\ 9 & -5 & -1\end{array}\right]$
Now, $\mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{adj} \mathrm{A}=\frac{1}{2}\left[\begin{array}{ccc}1 & 1 & -1 \\ -3 & 1 & 1 \\ 9 & -5 & -1\end{array}\right]$
Also, $\mathrm{A}^{-1} \cdot \mathrm{~A}=\frac{\frac{1}{2}}{=}\left[\begin{array}{ccc}1 & 1 & -1 \\ -3 & 1 & 1 \\ 9 & -5 & -1\end{array}\right]\left[\begin{array}{lll}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]$
$=\frac{1}{2}\left[\begin{array}{ccc}2+3-3 & 3+4-7 & 1+1-2 \\ -6+3+3 & -9+4+7 & -3+1+2 \\ 18-15-3 & 27-20-7 & 9-5-2\end{array}\right]$
$=\frac{1}{2}\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Hence, $A^{-1} \cdot A=I_{3}$
10. For the following pair of matrices verify that $(A B)^{-1}=B^{-1} A^{-1}$.
(i) $A=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & 6 \\ 3 & 2\end{array}\right]$
(ii) $A=\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]$

Solution:

(i) Given
$\mathrm{A}=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$,
$|A|=1 \neq 0$
Then, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right]$
$A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{1}{1}\left[\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right]$
$B=\left[\begin{array}{ll}4 & 6 \\ 3 & 2\end{array}\right]$,
$|B|=-10 \neq 0$
Then, $\operatorname{adj} \mathrm{B}=\left[\begin{array}{cc}2 & -6 \\ -3 & 4\end{array}\right]$
$B^{-1}=\frac{\operatorname{adj} B}{|B|}=-\frac{1}{10}\left[\begin{array}{cc}2 & -6 \\ -3 & 4\end{array}\right]$
Also, A. $B=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]\left[\begin{array}{ll}4 & 6 \\ 3 & 2\end{array}\right]=\left[\begin{array}{cc}12+6 & 18+4 \\ 28+15 & 42+10\end{array}\right]$
$\mathrm{AB}=\left[\begin{array}{ll}18 & 22 \\ 43 & 52\end{array}\right]$
$|A B|=936-946=-10 \neq 0$
$\operatorname{Adj}(A B)=\left[\begin{array}{cc}52 & -22 \\ -43 & 18\end{array}\right]$
$(A B)^{-1}=\frac{\operatorname{adj} A B}{|A B|}=\frac{1}{-10}\left[\begin{array}{cc}52 & -22 \\ -43 & 18\end{array}\right]=\left[\begin{array}{cc}-52 & 22 \\ 43 & -18\end{array}\right]$
Now $\mathrm{B}^{-1} \mathrm{~A}^{-1}=\frac{1}{-10}\left[\begin{array}{cc}2 & -6 \\ -3 & 4\end{array}\right]\left[\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right]$
$=\frac{1}{-10}\left[\begin{array}{cc}10+42 & -4-18 \\ -15-28 & 6+12\end{array}\right]$
$=\frac{1}{10}\left[\begin{array}{cc}-52 & 22 \\ 43 & -18\end{array}\right]$
Hence, $(A B)^{-1}=B^{-1} A^{-1}$
(ii) Given

$$
|A|=1 \neq 0
$$

$\operatorname{Adj} \mathrm{A}=\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right]$
$A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{1}{1}\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right]$
$\mathrm{B}=\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]$
$|B|=1 \neq 0$
$\operatorname{adj} B=\left[\begin{array}{cc}4 & -5 \\ -3 & 4\end{array}\right]$
$B^{-1}=\frac{\operatorname{adj} B}{|B|}=\frac{1}{1}\left[\begin{array}{cc}4 & -5 \\ -3 & 4\end{array}\right]$
Also, $\mathrm{AB}=\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]$
$=\left[\begin{array}{ll}11 & 14 \\ 29 & 37\end{array}\right]$
$|A B|=407-406=1 \neq 0$
And, $\operatorname{adj}(A B)=\left[\begin{array}{cc}37 & -14 \\ -29 & 11\end{array}\right]$
$(A B)^{-1}=\frac{\operatorname{adj} \mathrm{AB}}{|\mathrm{AB}|}=\frac{1}{1}\left[\begin{array}{cc}37 & -14 \\ -29 & 11\end{array}\right]$
$=\left[\begin{array}{cc}37 & -14 \\ -29 & 11\end{array}\right]$
Now, $B^{-1} A^{-1}=\left[\begin{array}{cc}4 & -5 \\ -3 & 4\end{array}\right]\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right]$
$=\left[\begin{array}{cc}37 & -14 \\ -29 & 11\end{array}\right]$
Hence, $(A B)^{-1}=B^{-1} A^{-1}$
11. Let $A=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right] \cdot \operatorname{Find}(A B)^{-1}$

Solution:

Given
$\mathrm{A}=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$
$|A|=15-14=1 \neq 0$
Therefore $\operatorname{adj} \mathrm{A}=\left[\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right]$
$A^{-1}=\frac{\text { adj }}{|A|}=\frac{1}{1}\left[\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right]$
$\mathrm{B}=\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]$
$|B|=54-56=-2 \neq 0$
$\operatorname{adj} \mathrm{B}=\left[\begin{array}{cc}9 & -7 \\ -8 & 6\end{array}\right]$
$B^{-1}=\frac{\mathrm{adj} B}{|B|}=\frac{1}{-2}\left[\begin{array}{cc}9 & -7 \\ -8 & 6\end{array}\right]$
Now, $(A B)^{-1}=B^{-1} A^{-1}$
$=\frac{1}{-2}\left[\begin{array}{cc}9 & -7 \\ -8 & 6\end{array}\right]\left[\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right]$
$=\frac{1}{-2}\left[\begin{array}{cc}45+49 & -18-21 \\ -40-42 & 16+18\end{array}\right]$
$=\frac{1}{-2}\left[\begin{array}{cc}94 & -39 \\ -82 & 34\end{array}\right]$
$(\mathrm{AB})^{-1}=\left[\begin{array}{cc}-47 & \frac{39}{2} \\ 41 & -17\end{array}\right]$
12. Given $A=\left[\begin{array}{cc}2 & -3 \\ -4 & 7\end{array}\right]$, compute A^{-1} and show that $2 A^{-1}=9 I-A$.

Solution:

Given
$A=\left[\begin{array}{cc}2 & -3 \\ -4 & 7\end{array}\right]$
$|A|=14-12=2 \neq 0$
$\operatorname{adj} A=\left[\begin{array}{ll}7 & 3 \\ 4 & 2\end{array}\right]$
$A^{-1}=\frac{1}{2}\left[\begin{array}{ll}7 & 3 \\ 4 & 2\end{array}\right]$
To Show: $2 A^{-1}=91-A$
We have

$$
\text { L.H.S }=2 A^{-1}=2 .^{\frac{1}{2}}\left[\begin{array}{ll}
7 & 3 \\
4 & 2
\end{array}\right]=\left[\begin{array}{ll}
7 & 3 \\
4 & 2
\end{array}\right]
$$

R.H.S $=91-A=\left[\begin{array}{ll}9 & 0 \\ 0 & 9\end{array}\right]-\left[\begin{array}{cc}2 & -3 \\ -4 & 7\end{array}\right]$
$=\left[\begin{array}{ll}7 & 3 \\ 4 & 2\end{array}\right]$
Hence, $2 A^{-1}=91-A$
13. If $A=\left[\begin{array}{ll}4 & 5 \\ 2 & 1\end{array}\right]$, then show that $A-3 I=2\left(I+3 A^{-1}\right)$.

Solution:

Given
$A=\left[\begin{array}{ll}4 & 5 \\ 2 & 1\end{array}\right]$
$|A|=4-10=-6 \neq 0$
$\operatorname{adj} A=\left[\begin{array}{cc}1 & -5 \\ -2 & 4\end{array}\right]$
$A^{-1}=\frac{1}{-6}\left[\begin{array}{cc}1 & -5 \\ -2 & 4\end{array}\right]$
To Show: $A-3 I=2\left(I+3 A^{-1}\right)$
We have

$$
\begin{aligned}
& \text { LHS }=A-3 \text { I } \\
& =\left[\begin{array}{ll}
4 & 5 \\
2 & 1
\end{array}\right]-3\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 5 \\
2 & -2
\end{array}\right] \\
& \text { R.H.S }=2\left(1+3 A^{-1}\right)=2 I+6 A^{-1} \\
& =2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+6 \frac{1}{6}\left[\begin{array}{cc}
-1 & 5 \\
2 & -4
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]+\left[\begin{array}{cc}
-1 & 5 \\
2 & -4
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 5 \\
2 & -2
\end{array}\right]
\end{aligned}
$$

$$
\text { Hence, } A-3 I=2\left(1+3 A^{-1}\right)
$$

14. Find the inverse of the matrix $A=\left[\begin{array}{cc}a & b \\ c & \frac{1+b c}{a}\end{array}\right]$, and show that $a A^{-1}=\left(a^{2}+b c+1\right) I-a A$.

Solution:

$$
A=\left[\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \frac{1+\mathrm{bc}}{\mathrm{a}}
\end{array}\right]
$$

Now, $|A|=\frac{a+a b c}{a}-b c=\frac{a+a b c-a b c}{a}=1 \neq 0$
Hence, A^{-1} exists.
Cofactors of A are

$$
\begin{aligned}
& \mathrm{C}_{11}=\frac{1+\mathrm{bc}}{\mathrm{a}} \\
& \mathrm{C}_{12}=-\mathrm{c} \\
& \mathrm{C}_{21}=-\mathrm{b} \\
& \mathrm{C}_{22}=\mathrm{a}
\end{aligned}
$$

Since, $\operatorname{adj} A=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]^{T}$
$\operatorname{Adj} A=\left[\begin{array}{cc}\frac{1+b c}{a} & -c \\ -b & a\end{array}\right]^{T}$
$=\left[\begin{array}{cc}\frac{1+b c}{a} & -b \\ -c & a\end{array}\right]$
Now, $A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A$

$$
\begin{aligned}
& A^{-1}=\frac{1}{1}\left[\begin{array}{cc}
\frac{1+b c}{a} & -b \\
-c & a
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{cc}
\frac{1+b c}{a} & -b \\
-c & a
\end{array}\right]
\end{aligned}
$$

To show a $A^{-1}=\left(a^{2}+b c+1\right) I-a A$.
LHS $=a A^{-1}$

$$
\begin{aligned}
& =a^{\left[\begin{array}{cc}
\frac{1+b c}{a} & -b \\
-c & a
\end{array}\right]} \\
& =\left[\begin{array}{cc}
1+b c & -a b \\
-a c & a^{2}
\end{array}\right]
\end{aligned}
$$

$$
\text { RHS }=\left(a^{2}+b c+1\right) I-a A
$$

$$
=\left[\begin{array}{cc}
a 2+b c+1 & 0 \\
0 & a 2+b c+1
\end{array}\right]-\left[\begin{array}{cc}
a^{2} & a b \\
a c & 1+b c
\end{array}\right]=\left[\begin{array}{cc}
1+b c & -a b \\
-a c & a^{2}
\end{array}\right]
$$

Hence, LHS = RHS
15. Given $A=\left[\begin{array}{lll}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{array}\right], B^{-1}=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$.Compute $(A B)^{-1}$

Solution:

Given
$A=\left[\begin{array}{lll}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{array}\right]$ and $B^{-1}=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$
Here, $(A B)^{-1}=B^{-1} A^{-1}$
$|A|=-5+4=-1$

Cofactors of A are
$\mathrm{C}_{11}=-1$
$\mathrm{C}_{21}=8$
$\mathrm{C}_{31}=-12$
$\mathrm{C}_{12}=0$
$\mathrm{C}_{22}=1$
$\mathrm{C}_{32}=-2$
$\mathrm{C}_{13}=1$
$\mathrm{C}_{23}=-10$
$\mathrm{C}_{33}=15$
$\operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}\mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} \\ \mathrm{C}_{21} & \mathrm{C}_{22} & \mathrm{C}_{23} \\ \mathrm{C}_{31} & \mathrm{C}_{32} & \mathrm{C}_{33}\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 8 & 1 & -10 \\ -12 & -2 & 15\end{array}\right]^{\mathrm{T}}$
So, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}-1 & 8 & -12 \\ 0 & 1 & -2 \\ 1 & -10 & 15\end{array}\right]$
Now, $\mathrm{A}^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} \mathrm{A}=\frac{1}{-1}\left[\begin{array}{ccc}-1 & 8 & -12 \\ 0 & 1 & -2 \\ 1 & -10 & 15\end{array}\right]$
(AB) ${ }^{-1=} \mathrm{B}^{-1} \mathrm{~A}^{-1}$
$=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]\left[\begin{array}{ccc}1 & -8 & 12 \\ 0 & -1 & 2 \\ -1 & 10 & -15\end{array}\right]$
$=\left[\begin{array}{lll}1+0-3 & -8-3+30 & 12+6-45 \\ 1+0-3 & -8-4+30 & 12+8-45 \\ 1+0-4 & -8-3+40 & 12+6-60\end{array}\right]$
Hence, $(A B)^{-1}=\left[\begin{array}{ccc}-2 & 19 & -27 \\ -2 & 18 & -25 \\ -3 & 29 & -42\end{array}\right]$
16. Let $F(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$ and $G(\beta)=\left[\begin{array}{ccc}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta\end{array}\right]$. Show that
(i) $[F(\alpha)]^{-1}=F(-\alpha)$
(ii) $[G(\beta)]^{-1}=G(-\beta)$
(iii) $[F(\alpha) G(\beta)]^{-1}=G(-\beta) F(-\alpha)$

Solution:

(i) Given
$F(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$
$|F(\alpha)|=\cos ^{2} \alpha+\sin ^{2} \alpha=1 \neq 0$
Cofactors of A are
$\mathrm{C}_{11}=\cos \alpha$
$\mathrm{C}_{21}=\sin \alpha$
$C_{31}=0$
$\mathrm{C}_{12}=-\sin \alpha$
$C_{22}=\cos \alpha$
$\mathrm{C}_{32}=0$
$\mathrm{C}_{13}=0$
$\mathrm{C}_{23}=0$
$\mathrm{C}_{33}=1$
$\operatorname{Adj} F(\alpha)=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]^{\mathrm{T}}$
So, $\operatorname{adj} F(\alpha)=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$
Now, $[F(\alpha)]^{-1}=\frac{1}{|F(\alpha)|}$ adj $F(\alpha)=\frac{1}{1}\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$

And, $F(-\alpha)=\left[\begin{array}{ccc}\cos (-\alpha) & \sin (-\alpha) & 0 \\ \sin (-\alpha) & \cos (-\alpha) & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
=\left[\begin{array}{ccc}
\cos \alpha & \sin \alpha & 0 \tag{ii}\\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(ii) We have
$|G(\beta)|=\cos ^{2} \beta+\sin ^{2} \beta=1$
Cofactors of A are
$\mathrm{C}_{11}=\cos \beta$
$\mathrm{C}_{21}=0$
$C_{31}=-\sin \beta$
$\mathrm{C}_{12}=0$
$\mathrm{C}_{22}=1$
$\mathrm{C}_{32}=0$
$\mathrm{C}_{13}=\sin \beta$
$\mathrm{C}_{23}=0$
$C_{33}=\cos \beta$
$\operatorname{Adj} G(\beta)=\left[\begin{array}{lll}\mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} \\ \mathrm{C}_{21} & \mathrm{C}_{22} & \mathrm{C}_{23} \\ \mathrm{C}_{31} & \mathrm{C}_{32} & \mathrm{C}_{33}\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{ccc}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta\end{array}\right]^{\mathrm{T}}$
So, $\operatorname{adj} \mathrm{G}(\beta)=\left[\begin{array}{ccc}\cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta\end{array}\right]$
Now, $[G(\beta)]^{-1}=\frac{1}{1}\left[\begin{array}{ccc}\cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta\end{array}\right]$

And, $G(-\beta)=\left[\begin{array}{ccc}\cos (-\beta) & 0 & \sin (-\beta) \\ 0 & 1 & 0 \\ \sin (-\beta) & 0 & \cos (-\beta)\end{array}\right]$
$=\left[\begin{array}{ccc}\cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta\end{array}\right]$
Hence, $[\mathrm{G}(\beta)]^{-1}=\mathrm{G}-\beta$)
(iii) Now we have to show that
$[F(\alpha) G(\beta)]^{-1}=G(-\beta) F(-\alpha)$
We have already know that
$[G(\beta)]^{-1}=G(-\beta)$
$[F(\alpha)]^{-1}=F(-\alpha)$
And LHS $=[F(\alpha) G(\beta)]^{-1}$
$=[G(\beta)]^{-1}[F(\alpha)]^{-1}$
$=G(-\beta) F(-\alpha)$
Hence $=$ RHS
17. If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ verify that $A^{2}-4 A+I=0$, where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $O=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Hence find A^{-1}.

Solution:

Consider,

$$
\begin{aligned}
& \mathrm{A}^{2}=\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
4+3 & 6+6 \\
2+2 & 3+4
\end{array}\right] \\
& =\left[\begin{array}{cc}
7 & 12 \\
4 & 7
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 4 \mathrm{~A}=4\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
8 & 12 \\
4 & 8
\end{array}\right] \\
& \mathrm{I}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Now, $\mathrm{A}^{2}-4 \mathrm{~A}+\mathrm{I}=\left[\begin{array}{cc}7 & 12 \\ 4 & 7\end{array}\right]-\left[\begin{array}{cc}8 & 12 \\ 4 & 8\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
=\left[\begin{array}{cc}
7-8+1 & 12-2+0 \\
4-4+0 & 7-8+1
\end{array}\right]
$$

Hence, $=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Now, $\mathrm{A}^{2}-4 \mathrm{~A}+\mathrm{I}=0$

$$
A \cdot A-4 A=-I
$$

Multiply by A^{-1} both sides we get

$$
\begin{aligned}
& A \cdot A\left(A^{-1}\right)-4 A A^{-1}=-I A^{-1} \\
& A I-4 I=-A A^{-1} \\
& A^{-1}=4 I-A I=\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]-\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{cc}
2 & -3 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

18. Show that $A=\left[\begin{array}{cc}-8 & 5 \\ 2 & 4\end{array}\right]$ satisfies the equation $A^{2}+4 A-42 I=0 . H e n c e$ find A^{-1}.

Solution:
Given

$$
A=\left[\begin{array}{cc}
-8 & 5 \\
2 & 4
\end{array}\right]
$$

$A^{2}=\left[\begin{array}{cc}-8 & 5 \\ 2 & 4\end{array}\right]\left[\begin{array}{cc}-8 & 5 \\ 2 & 4\end{array}\right]=\left[\begin{array}{cc}64+10 & -40+20 \\ -16+8 & 10+16\end{array}\right]$
$=\left[\begin{array}{cc}74 & -20 \\ -8 & 26\end{array}\right]$
$4 A=4\left[\begin{array}{cc}-8 & 5 \\ 2 & 4\end{array}\right]=\left[\begin{array}{cc}-32 & 20 \\ 8 & 16\end{array}\right]$
$421=42^{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]}=\left[\begin{array}{cc}42 & 0 \\ 0 & 42\end{array}\right]$
Now,
$A^{2}+4 A-421=\left[\begin{array}{cc}74 & -20 \\ -8 & 26\end{array}\right]+\left[\begin{array}{cc}-32 & 20 \\ 8 & 16\end{array}\right]-\left[\begin{array}{cc}42 & 0 \\ 0 & 42\end{array}\right]$
$=\left[\begin{array}{cc}74-74 & -20+20 \\ -8+8 & 42-42\end{array}\right]$
Hence, $=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Now, $A^{2}+4 A-421=0$
$=A^{-1} A \cdot A+4 A^{-1} \cdot A-42 A^{-1} I=0$
$=I A+4 I-42 A^{-1}=0$
$=42 A^{-1}=A+41$
$=\mathrm{A}^{-1=\frac{1}{42}[\mathrm{~A}+4 \mathrm{I}]}$
$=\frac{1}{42}\left[\left[\begin{array}{cc}-8 & 5 \\ 2 & 4\end{array}\right]+\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]\right]$

$$
\mathrm{A}^{-1=} \frac{1}{42}\left[\left[\begin{array}{cc}
-4 & 5 \\
2 & 8
\end{array}\right]\right]
$$

19. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ show that $A^{2}-5 A+7 I=0 . H$ ence find A^{-1}.

Solution:

Given
$A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}9-1 & 3+2 \\ -3-2 & -1+4\end{array}\right]$
$=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]$
Now, $A^{2}-5 A+7 I=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]-5\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]+7\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{cc}8-15+7 & 5-5+0 \\ -5+5+0 & 3-10+7\end{array}\right]$
$=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
So, $A^{2}-5 A+7 I=0$
Multiply by A^{-1} both sides

$$
\begin{aligned}
& A \cdot A A^{-1}-5 A \cdot A^{-1}+7 I \cdot A^{-1}=0 \\
& A-5 I+7 A^{-1}=0 \\
& A^{-1}=\frac{1}{7}[5 I-A] \\
& A^{-1}=\frac{1}{7} \cdot\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]-\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right] \\
& A^{-1}=\frac{1}{7} \cdot\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right]
\end{aligned}
$$

Find the inverse of the following matrices by using elementary row transformations:

1. $\left[\begin{array}{cc}7 & 1 \\ 4 & -3\end{array}\right]$

Solution:

For row transformation we have
$A=I A$
$\Rightarrow\left[\begin{array}{cc}7 & 1 \\ 4 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{1} \rightarrow \frac{1}{7} r_{1}$
$\Rightarrow\left[\begin{array}{cc}1 & \frac{1}{7} \\ 4 & -3\end{array}\right]=\left[\begin{array}{ll}\frac{1}{7} & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{2} \rightarrow r_{2}-4 r_{1}$
$\Rightarrow\left[\begin{array}{cc}1 & \frac{1}{7} \\ 0 & \frac{-25}{7}\end{array}\right]=\left[\begin{array}{cc}\frac{1}{7} & 0 \\ -\frac{4}{7} & 1\end{array}\right] \mathrm{A}$
Applying $r_{2} \rightarrow-\frac{7}{25} r_{2}$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{1}{7} \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{7} & 0 \\ \frac{4}{25} & -\frac{7}{25}\end{array}\right] \mathrm{A}$
Applying $r_{1} \rightarrow r_{1}-\frac{1}{7} r_{2}$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{21}{175} & \frac{1}{25} \\ \frac{4}{25} & -\frac{7}{25}\end{array}\right] \mathrm{A}$

So, as we know that
$I=A^{-1} A$

Therefore

$$
\Rightarrow \quad A^{-1}=\left[\begin{array}{cc}
\frac{21}{175} & \frac{1}{25} \\
\frac{4}{25} & -\frac{7}{25}
\end{array}\right]
$$

2. $\left[\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right]$

Solution:

For row transformation we have,
$A=I A$
$\Rightarrow\left[\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{1} \rightarrow \frac{1}{5} r_{1}$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{2}{5} \\ 2 & 1\end{array}\right]=\left[\begin{array}{ll}\frac{1}{5} & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{2} \rightarrow r_{2}-2 r_{1}$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{2}{5} \\ 0 & \frac{1}{5}\end{array}\right]=\left[\begin{array}{cc}\frac{1}{5} & 0 \\ -\frac{2}{5} & 1\end{array}\right] \mathrm{A}$
Applying $r_{2} \rightarrow 5 r_{2}$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{2}{5} \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{5} & 0 \\ -2 & 5\end{array}\right] \mathrm{A}$

Applying $r_{1} \rightarrow r_{1}-\frac{2}{5} r_{2}$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -2 \\ -2 & 5\end{array}\right] \mathrm{A}$
So, as we know that
$\mathrm{I}=\mathrm{A}^{-1} \mathrm{~A}$
Therefore
$\Rightarrow A^{-1}=\left[\begin{array}{cc}1 & -2 \\ -2 & 5\end{array}\right]$
3. $\left[\begin{array}{cc}1 & 6 \\ -3 & 5\end{array}\right]$

Solution:

For row transformation we have
$A=I A$
$\Rightarrow\left[\begin{array}{ll}1 & 6 \\ -3 & 5\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{2} \rightarrow r_{2}+3 r_{1}$
$\Rightarrow\left[\begin{array}{cc}1 & 6 \\ 0 & 23\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right] \mathrm{A}$
Applying $r_{2} \rightarrow \frac{1}{23} r_{2}$
$\Rightarrow\left[\begin{array}{ll}1 & 6 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ \frac{3}{23} & \frac{1}{23}\end{array}\right] A$
Applying $r_{1} \rightarrow r_{1}-6 r_{2}$

$$
\Rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\frac{5}{23} & \frac{-6}{23} \\
\frac{3}{23} & \frac{1}{23}
\end{array}\right] \mathrm{A}
$$

So, as we know that
$I=A^{-1} A$

Therefore

$\Rightarrow A^{-1}=\frac{1}{23}\left[\begin{array}{rr}5 & -6 \\ 3 & 1\end{array}\right]$
4. $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$

Solution:

For elementary row operation we have
$A=I A$
$\Rightarrow\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{1} \rightarrow \frac{1}{2} r_{1}$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{5}{2} \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}\frac{1}{2} & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{2} \rightarrow r_{2}-r_{1}$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{5}{2} \\ 0 & \frac{1}{2}\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ -\frac{1}{2} & 1\end{array}\right] \mathrm{A}$
Applying $r_{2} \rightarrow 2 r_{2}$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{5}{2} \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ -1 & 2\end{array}\right] \mathrm{A}$
Applying $r_{1} \rightarrow r_{1}-\frac{5}{2} r_{2}$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right] \mathrm{A}$
So, as we know that
$I=A^{-1} A$
Therefore
$\Rightarrow A^{-1}=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]$
5. $\left[\begin{array}{cc}3 & 10 \\ 2 & 7\end{array}\right]$

Solution:

For elementary row operation we have
$A=I A$
$\Rightarrow\left[\begin{array}{cc}3 & 10 \\ 2 & 7\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{1} \rightarrow \frac{1}{3} r_{1}$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{10}{3} \\ 2 & 7\end{array}\right]=\left[\begin{array}{cc}\frac{1}{3} & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{2} \rightarrow r_{2}-2 r_{1}$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{10}{3} \\ 0 & \frac{1}{3}\end{array}\right]=\left[\begin{array}{cc}\frac{1}{3} & 0 \\ -\frac{2}{3} & 1\end{array}\right] \mathrm{A}$

Applying $r_{2} \rightarrow 3 r_{2}$
$\Rightarrow\left[\begin{array}{cc}1 & \frac{10}{3} \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{3} & 0 \\ -2 & 3\end{array}\right] \mathrm{A}$
Applying $r_{1} \rightarrow r_{1}-\frac{10}{3} r_{2}$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}7 & -10 \\ -2 & 3\end{array}\right] A$
So, as we know that
$I=A^{-1} A$
Therefore
$\Rightarrow A^{-1}=\left[\begin{array}{cc}7 & -10 \\ -2 & 3\end{array}\right]$
6. $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$

Solution:

For elementary row operation we have,
$A=I A$
$\Rightarrow\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{1} \leftrightarrow r_{2}$
$\Rightarrow\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 3 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{3} \rightarrow r_{3}-3 r_{1}$
$\Rightarrow\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -5 & -8\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -3 & 1\end{array}\right] A$
Applying $r_{1} \rightarrow r_{1}-2 r_{2}$ and $r_{3} \rightarrow r_{3}+5 r_{2}$
$\Rightarrow\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & 0 & 0 \\ 5 & -3 & 1\end{array}\right] \mathrm{A}$
Applying $r_{3} \rightarrow \frac{1}{2} r_{3}$
$\Rightarrow\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 0 \\ \frac{1}{5} & 0 & 0 \\ \frac{-3}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\right] A$
Applying $r_{1} \rightarrow r_{1}+r_{3}$ and $r_{2} \rightarrow r_{2}-2 r_{3}$
$\Rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & 1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2}\end{array}\right] A$
So, as we know that
$\mathrm{I}=\mathrm{A}^{-1} \mathrm{~A}$
Therefore
$\Rightarrow A^{-1}=\left[\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & 1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2}\end{array}\right]$
7. $\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$

Solution:

For elementary row operation we have,
$A=I A$
$\Rightarrow\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $r_{1} \rightarrow \frac{1}{2} r_{1}$
$\Rightarrow\left[\begin{array}{ccc}1 & 0 & -\frac{1}{2} \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{2} \rightarrow r_{2}-5 r_{1}$
$\Rightarrow\left[\begin{array}{ccc}1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $r_{3} \rightarrow r_{3}-r_{2}$
$\Rightarrow\left[\begin{array}{ccc}1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 0 & \frac{1}{2}\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ \frac{1}{2} & -1 & 1\end{array}\right] \mathrm{A}$
Applying $r_{3} \rightarrow 2 r_{3}$
$\Rightarrow\left[\begin{array}{ccc}1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ 5 & -2 & 2\end{array}\right] A$
Applying $r_{1} \rightarrow r_{1}+\frac{1}{2} r_{3}$ and $r_{2} \rightarrow r_{2}-\frac{5}{2} r_{3}$
$\Rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right] A$
So, as we know that
$\mathrm{I}=\mathrm{A}^{-1} \mathrm{~A}$
Therefore
$\Rightarrow A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$
8. $\left[\begin{array}{lll}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]$

Solution:

For row transformation we have
$A=I A$
$\Rightarrow\left[\begin{array}{lll}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $r_{1} \rightarrow \frac{1}{2} r_{1}$
$\Rightarrow\left[\begin{array}{lll}1 & \frac{3}{2} & \frac{1}{2} \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]=\left[\begin{array}{lll}\frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \mathrm{A}$
Applying $r_{2} \rightarrow r_{2}-2 r_{1}$ and $r_{3} \rightarrow r_{3}-3 r_{1}$
$\Rightarrow\left[\begin{array}{lll}1 & \frac{3}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 \\ 0 & \frac{5}{2} & \frac{1}{2}\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ -1 & 1 & 0 \\ -\frac{3}{2} & 0 & 1\end{array}\right] \mathrm{A}$

Applying $r_{1} \rightarrow r_{1}-\frac{3}{2} r_{2}$ and $r_{3} \rightarrow r_{3}-\frac{5}{2} r_{2}$

$$
\Rightarrow\left[\begin{array}{lll}
1 & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{ccc}
2 & -\frac{3}{2} & 0 \\
-1 & 1 & 0 \\
1 & -\frac{5}{2} & 1
\end{array}\right] \mathrm{A}
$$

Applying $r_{3} \rightarrow 2 r_{3}$

$$
\Rightarrow\left[\begin{array}{lll}
1 & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & -\frac{3}{2} & 0 \\
-1 & 1 & 0 \\
2 & -5 & 2
\end{array}\right] A
$$

Applying $r_{1} \rightarrow r_{1}-\frac{1}{2} r_{3}$

$$
\Rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 1 & 0 \\
2 & -5 & 2
\end{array}\right] A
$$

So, as we know that

$$
\mathrm{I}=\mathrm{A}^{-1} \mathrm{~A}
$$

Therefore

$$
\Rightarrow A^{-1}=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 1 & 0 \\
2 & -5 & 2
\end{array}\right]
$$

