

Hydroponics	Julius Von Sachs Growing plants in nutrient solution (soil-free)
Macronutrients	Present in excess of 10 mmole/kg of dry wt. C, H, O, N, P, K, S, Ca,
	N requirement is the greatest
Micronutrients	Less than 10 mmole/kg of dry wt.
	Fe, Mn, Cu, Mo, Zn, B, Cl, Ni
	Fe is required the most

Elements that activate enzymes	Mg ²⁺ - RuBisCO and PEP carboxylase Zn ²⁺ - Alcohol dehydrogenase, carboxylase Mo - Nitrogenase, nitrate reductase
	Fe ³⁺ - Catalase
Potassium	Present in abundant quantities in meristematic tissues, buds, leaves and root tips
	Plays role in opening and closing of stomata, protein synthesis, ionic balance, enzyme activation and turgidity
Calcium	Calcium pectate in the middle lamella of cell wall
	Mitotic spindle formation
	Gets accumulated in older leaves and not remobilised

Sulphur	Amino acids- cysteine and methionine Thiamine, biotin, coenzyme-A, ferredoxin
Iron	Absorbed as Fe ³⁺ Electron transport proteins- ferredoxin, cytochromes Formation of chlorophyll
Manganese	Absorbed as Mg ²⁺ Splitting of water during photosynthesis

Zinc	Absorbed as Zn ²⁺
	Synthesis of auxin
	Activation of carboxylases, alcohol dehydrogenase
Boron	Absorbed as BO ₃ ³⁻ and B ₄ O ₇ ²⁻
	Required for Ca ²⁺ uptake and utilisation
	Pollen germination, cell elongation and differentiation
	Carbohydrate translocation
Molybdenum	Absorbed as MoO ₂ ²⁺
	Plays role in nitrogen metabolism

Chlorosis	Loss of chlorophyll and yellowing of leaves
	Due to deficiency of N, K, Mg, S, Fe, Mn, Zn and Mo
Necrosis	Death of tissue Due to deficiency of Ca, Mg, Cu, K
Inhibition of cell division	Due to deficiency of N, K, S

Delay in flowering	Due to deficiency of N, S, Mo
Manganese toxicity	Chlorotic veins surrounded by brown spots Induces deficiency of
	Fe, Mg and Ca
Nitrification	Ammonia to nitrite (NO ₂ -) by <i>Nitromonas, Nitococcus</i>
	Nitrite to nitrate (NO₃⁻) by <i>Nitrobacter</i>

Symbiotic nitrogen fixers	<i>Rhizobium-</i> in the root nodules of legumes, e.g. alfalfa, beans, peas, lentils, clover <i>Frankia-</i> non-leguminous pleats, e.g. <i>Alnus,</i> <i>Casuarina</i>
Root nodule formation	Initiation in the cortex of the root Requires 8 ATP molecules per molecule of ammonia produced Energy is derived from
Nitrogenase	respiration of host cells Present in root nodules Mo-Fe protein, oxygen sensitive enzyme Converts atmospheric nitrogen to ammonia

Leghaemoglobin	Gives distinct pink colour to root nodules Acts as a scavenger of oxygen and reduces free oxygen in root nodules for nitrogenase activity Maintains high oxygen concentration bound to it for aerobic respiration
Utilisation of ammonia	 Amination- Formation of glutamic acid from α-ketoglutarate. Enzyme involved is glutamate dehydrogenase Transamination- Formation of other amino acids from glutamic acid
Transportation of nitrogen	Mostly as amides- asparagine and glutamine through xylem As ureides in soybean