JEE Main 2017 Maths Paper With Solutions (April 2)

Question 1: The function $\mathrm{f}: \mathrm{R} \rightarrow[(-1 / 2),(1 / 2)]$ is defined as $f(\mathrm{x})=[\mathrm{x}] /[1+$ x^{2}], is:
(1) injective but not surjective.
(2) surjective but not injective.
(3) neither injective nor surjective.
(4) invertible.

Solution: (2)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=[\mathrm{x}] /\left[1+\mathrm{x}^{2}\right] \\
& \quad f^{\prime}(x)=\frac{\left(1+x^{2}\right) * 1-x * 2 x}{\left(1+x^{2}\right)^{2}} \\
& =\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

$f^{\prime}(x)$ changes sign at different intervals.
\therefore Not injective.
$y=\left(x /\left(1+x^{2}\right)\right)$
$y x^{2}-x+y=0$
For $\mathrm{y} \neq 0$
$\mathrm{D}=1-4 \mathrm{y}^{2} \geq 0$
$\mathrm{y} \in[(-1 / 2),(1 / 2)]-\{0\}$
For, $\mathrm{y}=0 \Rightarrow \mathrm{x}=0$
\therefore Part of range
\therefore Range = [(-1/2), (1/2)]
\therefore Surjective but not injective.
Question 2: If, for a positive integer n , the quadratic equation,

$$
\begin{aligned}
& x(x+1)+(x+1)(x+2)+\ldots \\
& +(x+\overline{n-1})(x+n)=10 n
\end{aligned}
$$

has two consecutive integral solutions, then n is equal to:
(1) 9
(2) 10
(3) 11
(4) 12

Solution: (3)
Rearranging equation, we get
$n x^{2}+\{1+3+5+\ldots \ldots+(2 n-1) x$

$$
+\{1.2+2.3+\ldots \ldots+(\mathrm{n}-1) \mathrm{n}\}=10 \mathrm{n}
$$

$n x^{2}+n^{2} x+[(n-1) n(n+1)] / 3=10 n$
$\mathrm{x}^{2}+\mathrm{nx}+\left[\mathrm{n}^{2}-31\right] / 3=0$
Given difference of roots $=1$
$|\alpha-\beta|=1$
D $=1$
$n^{2}-(4 / 3)\left(n^{2}-31\right)=1$
$\mathrm{n}=11$

Question 3: Let ω be a complex number such that $2 \omega+1=z$ where $z=\sqrt{ }-3$. If

$$
\left|\begin{array}{rrr}
1 & 1 & 1 \\
1 & -\omega^{2}-1 & \omega^{2} \\
1 & \omega^{2} & \omega^{7}
\end{array}\right|=3 \mathrm{k}
$$

then k is equal to,
(1) z
(2) -1
(3) 1
(4) $-z$

Solution: (4)
$2 \omega+1=z, z=\sqrt{3} i$
$\omega=(-1+\sqrt{3} i) / 2$ [Cube root of unity]

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1-\omega^{2} & \omega^{2} \\
1 & \omega^{2} & \omega^{7}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right|=\left|\begin{array}{ccc}
3 & 1 & 1 \\
0 & \omega & \omega^{2} \\
0 & \omega^{2} & \omega
\end{array}\right| \\
& =3\left(\omega_{2}+\omega^{4}\right) \\
& =3[\{(-1-\sqrt{ } 3 \mathrm{i}) / 2\}-\{(-1+\sqrt{ } 3 \mathrm{i}) / 2\}] \\
& =-3 \sqrt{3 i} \\
& =-3 \mathrm{z} \\
& \mathrm{k}=-\mathrm{z}
\end{aligned}
$$

(1) $\left[\begin{array}{ll}51 & 63 \\ 84 & 72\end{array}\right]$
(2) $\left[\begin{array}{ll}51 & 84 \\ 63 & 72\end{array}\right]$
(3) $\left[\begin{array}{rr}72 & -63 \\ -84 & 51\end{array}\right]$
(4) $\left[\begin{array}{rr}72 & -84 \\ -63 & 51\end{array}\right]$

Solution: (1)

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -3 \\
-4 & 1
\end{array}\right] \\
& |A-\lambda I|=\left|\begin{array}{cc}
2-\lambda & -3 \\
-4 & 1-\lambda
\end{array}\right| \\
& =\left(2-2 \lambda-\lambda+\lambda^{2}\right)-12 \\
& \mathrm{f}(\lambda)=\lambda^{2}-3 \lambda-10
\end{aligned}
$$

\because A satisfies $\mathrm{f}(\lambda)$.
$\mathrm{A}^{2}-3 \mathrm{~A}-10 \mathrm{I}=0$

$$
A^{2}-3 A=10 I
$$

$$
3 \mathrm{~A}^{2}-9 \mathrm{~A}=30 \mathrm{I}
$$

$$
3 \mathrm{~A}^{2}+12 \mathrm{~A}=30 \mathrm{I}+21 \mathrm{~A}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
30 & 0 \\
0 & 30
\end{array}\right]+\left[\begin{array}{cc}
42 & -63 \\
-84 & 21
\end{array}\right] \\
& =\left[\begin{array}{cc}
72 & -63 \\
-84 & 51
\end{array}\right]
\end{aligned}
$$

$$
\operatorname{adj}\left(3 A^{2}+12 A\right)=\left[\begin{array}{ll}
51 & 63 \\
84 & 72
\end{array}\right]
$$

Question 5: If S is the set of distinct values of ' b ' for which the following system of linear equations

$$
\begin{aligned}
& x+y+z=1 \\
& x+a y+z=1 \\
& a x+b y+z=0
\end{aligned}
$$

has no solution, then S is :
(1) an infinite set
(2) a finite set containing two or more elements
(3) a singleton
(4) an empty set

Solution: (3)

$\Rightarrow-\left(1-a^{2}\right)=0$
$\Rightarrow \mathrm{a}=1$
For $\mathrm{a}=1$
Eq. (1) \& (2) are identical i.e., $x+y+z=1$.
To have no solution with $\mathrm{x}+\mathrm{by}+\mathrm{z}=0$.
b=1

Question 6: A man X has 7 friends, 4 of them are ladies and 3 are men. His wife Y also has 7 friends, 3 of them are ladies and 4 are men. Assume X and Y have no common friends. Then the total number of ways in which X and Y together can throw a party inviting 3 ladies and 3 men, so that 3 friends of each of X and Y are in this party, is :
(1) 468
(2) 469
(3) 484
(4) 485

Solution: (4)
$X(4 \mathrm{~L} 3 \mathrm{G})$
Y(3 L 4 G)
3 L O G
OL3G
2 L 1 G
1 L 2 G
1 L 2 G
2 L 1 G
0 L 3 G
3 LOG

Required number of ways
$={ }^{4} \mathrm{C}_{3} \cdot{ }^{4} \mathrm{C}_{3}+\left({ }^{4} \mathrm{C}_{2} \cdot{ }^{3} \mathrm{C}_{1}\right)^{2}+\left({ }^{4} \mathrm{C}_{1} \cdot{ }^{3} \mathrm{C}_{2}\right)^{2}+\left({ }^{3} \mathrm{C}_{3}\right)^{2}$
$=16+324+144+1$
$=485$

Question 7: The value of $\left({ }^{21} \mathrm{C}_{1}-{ }^{10} \mathrm{C}_{1}\right)+\left({ }^{21} \mathrm{C}_{2}-{ }^{10} \mathrm{C}_{2}\right)+\left({ }^{21} \mathrm{C}_{3}-{ }^{10} \mathrm{C}_{3}\right)+\left({ }^{21} \mathrm{C}_{4}-{ }^{10} \mathrm{C}_{4}\right)+$ $\ldots\left({ }^{21} \mathrm{C}_{10}-{ }^{10} \mathrm{C}_{10}\right)$ is
(1) $2^{21}-2^{10}$
(2) $2^{20}-2^{9}$
(3) $2^{20}-2^{10}$
(4) $2^{21}-2^{11}$

Solution: (3)

$$
\begin{aligned}
{ }^{21} C_{1}+{ }^{21} C_{2}+\ldots+{ }^{21} C_{10} & =\frac{1}{2}\left\{{ }^{21} C_{0}+{ }^{21} C_{1}+\ldots+{ }^{21} C_{21}\right\}-1 \\
& =2^{20}-1 \\
\left({ }^{10} C_{1}+{ }^{10} C_{2}+\ldots+{ }^{10} C_{10}\right) & =2^{10}-1
\end{aligned}
$$

Required sum $=\left(2^{20}-1\right)-\left(2^{10}-1\right)$
$=2^{20}-2^{10}$

Question 8: For any three positive real numbers a, b and $c, 9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-\right.$ $3 a c)=15 b(3 a+c)$. Then :
(1) b, c and a are in A.P.
(2) a, b and c are in A.P.
(3) a, b and c are in G.P.
(4) b, c and a are in G.P.

Solution: (1)
$9\left(25 \mathrm{a}^{2}+\mathrm{b}^{2}\right)+25\left(\mathrm{c}^{2}-3 \mathrm{ac}\right)=15 \mathrm{~b}(3 \mathrm{a}+\mathrm{c})$
$\Rightarrow(15 \mathrm{a})^{2}+(3 \mathrm{~b})^{2}+(5 \mathrm{c})^{2}-45 \mathrm{~b}-15 \mathrm{~b}-75 \mathrm{ac}=0$
$(15 a-3 b)^{2}+(3 b-5 c)^{2}+(15 a-5 c)^{2}=0$
It is possible when
$15 \mathrm{a}-3 \mathrm{~b}=0$ and $3 \mathrm{~b}-5 \mathrm{c}=0$ and $15 \mathrm{a}-5 \mathrm{c}=0$
$15 \mathrm{a}=3 \mathrm{~b}=5 \mathrm{c}$
$(\mathrm{a} / 1)=(\mathrm{b} / 5)=(\mathrm{c} / 3)$
$\therefore \mathrm{b}, \mathrm{c}$, a are in A.P.
Question 9: Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$. If $\mathrm{f}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ is such that $\mathrm{a}+\mathrm{b}+\mathrm{c}=3$ and f
$(x+y)=f(x)+f(y)+x y, \forall x, y \in R$, then $\sum_{n=1}^{10} f(n)=$ is equal to :
(1) 165
(2) 190
(3) 255
(4) 330

Solution: (4)
As $f(x+y)=f(x)+f(y)+x y$
Given, $f(1)=3$
Putting, $\mathrm{x}=\mathrm{y}=1$
$\Rightarrow \mathrm{f}(2)=2 \mathrm{f}(1)+1=7$
Similarly, $\mathrm{x}=1, \mathrm{y}=2$,
$\Rightarrow \mathrm{f}(3)=\mathrm{f}(1)+\mathrm{f}(2)+2=12$
Now, $\sum_{n=1}^{10} \mathrm{f}(\mathrm{n})=\mathrm{f}(1)+\mathrm{f}(2)+\ldots \mathrm{f}(10)$
$=3+7+12+18+\ldots$
$=\mathrm{S}$ (let)
Now, $\mathrm{S}_{\mathrm{n}}=3+7+12+18 \ldots+\mathrm{t}_{\mathrm{n}}$
Again, $\mathrm{S}_{\mathrm{n}}=3+7+12+18 \ldots+\mathrm{t}_{\mathrm{n}-1}+\mathrm{t}_{\mathrm{n}}$
We get, $\mathrm{t}_{\mathrm{n}}=3+4+5+\ldots . \mathrm{n}$ terms
$=[\mathrm{n}(\mathrm{n}+5)] / 2$
i.e., $S_{n}=\sum_{n=1}^{n} t_{n}=\frac{1}{2}\left\{\sum n^{2}+5 \sum n\right\}=\frac{n(n+1)(n+8)}{6}$

So, $S_{10}=\frac{10 \times 11 \times 18}{6}=330$

Question 10: $\lim _{x \rightarrow \pi / 2} \frac{\cot x-\cos x}{(\pi-2 x)^{3}}$ equals:
(1) $1 / 16$
(2) $1 / 8$
(3) $1 / 4$
(4) $1 / 24$

Solution: (1)

$$
\begin{aligned}
& \quad \lim _{x \rightarrow \pi / 2} \frac{\cot x-\cos x}{(\pi-2 x)^{3}} \\
& \text { Put } x=\frac{\pi}{2}-x=t \\
& =\lim _{t=0} \frac{\tan t-\sin t}{8 t^{3}} \\
& =\lim _{t=0} \frac{\sin t * 2 \sin ^{2} \frac{t}{2}}{8 t^{3}} \\
& = \\
& =\frac{1}{16}
\end{aligned}
$$

Question 11: If for $x \in(0,(1 / 4))$, the derivative of $\tan ^{-1}\left(6 x \sqrt{ } /\left(1-9 x^{3}\right)\right)$ is $\sqrt{ } x$. $g(x)$, then $g(x)$ equals:
(1) $\left(3 x \sqrt{ } \times /\left(1-9 x^{3}\right)\right)$
(2) $\left(3 x /\left(1-9 x^{3}\right)\right)$
(3) $\left(3 /\left(1+9 x^{3}\right)\right)$
(4) $\left(9 /\left(1+9 x^{3}\right)\right)$

Solution: (4)
$\mathrm{f}(\mathrm{x})=2 \tan ^{-1}(3 \mathrm{x} \sqrt{ } \mathrm{x})$ for $\mathrm{x} \in(0,(1 / 4))$
$\mathrm{f}^{\prime}(\mathrm{x})=\left(9{ }^{\mathrm{x}} /\left(1+9 \mathrm{x}^{3}\right)\right)$
$\mathrm{g}(\mathrm{x})=\left(9 /\left(1+9 \mathrm{x}^{3}\right)\right)$
Question 12: The normal to the curve $y(x-2)(x-3)=x+6$ at the point where the curve intersects the y-axis passes through the point :
(1) $(1 / 2,1 / 2)$
(2) $(1 / 2,-1 / 3)$
(3) $(1 / 2,1 / 3)$
(4) $(-1 / 2,-1 / 2)$

Solution: (1)
$y(x-2)(x-3)=x+6$
At y -axis, $\mathrm{x}=0, \mathrm{y}=1$
Now, on differentiation,
$(d y / d x)(x-2)(x-3)+y(2 x-5)=1$
$(\mathrm{dy} / \mathrm{dx})(6)+1 *(-5)=1$
$(d y / d x)=6 / 6=1$
Now slope of normal $=-1$
Equation of normal $\mathrm{y}-1=-1(\mathrm{x}-0)$
$y+x-1=0$
Line (i) passes through (1/2,1/2).
Question 13: Twenty meters of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is :
(1) 10
(2) 25
(3) 30
(4) 12.5

Solution: (2)

$2 \mathrm{r}+\theta \mathrm{r}=20$---- (i)
A $=$ Area $=(\theta / 2 \pi) *\left(\pi r^{2}\right)=\left(\theta r^{2} / 2\right)----(i i)$
$\mathrm{A}=\left(\mathrm{r}^{2} / 2\right)([20-2 \mathrm{r}] / \mathrm{r})$
$\mathrm{A}=\left[\left(20 \mathrm{r}-2 \mathrm{r}^{2}\right) / 2\right]=10 \mathrm{r}-\mathrm{r}^{2}$
A to be maximum
$\mathrm{dA} / \mathrm{dr}=10-2 \mathrm{r}=0 \Rightarrow \mathrm{r}=5$
$\mathrm{d}^{2} \mathrm{~A} / \mathrm{dr}^{2}=-2<0$
Hence for $\mathrm{r}=5$, A is maximum
Now, $10+(\theta * 5)=20 \Rightarrow \theta=2$ (radian)
Area $=(2 / 2 \pi) *(\pi)(5)^{2}=25 \mathrm{sq} \mathrm{m}$
Question 14: Let $\mathrm{I}_{\mathrm{n}}=\int \tan ^{\mathrm{n}} \mathrm{xdx},(\mathrm{n}>1)$. If $\mathrm{I}_{4}+\mathrm{I}_{6}=\mathrm{a} \tan ^{5} \mathrm{x}+\mathrm{bx} \mathrm{x}^{5}+\mathrm{C}$, where C is a constant of integration, then the ordered pair (a, b) is equal to :
(1) $(1 / 5,0)$
(2) $(1 / 5,-1)$
(3) $(-1 / 5,0)$
(4) $(-1 / 5,1)$

Solution: (1)
$\mathrm{I}_{\mathrm{n}}=\int \tan ^{\mathrm{n}} \mathrm{xdx},(\mathrm{n}>1)$
$\mathrm{I}_{4}+\mathrm{I}_{6}=\int\left(\tan ^{4} \mathrm{x}+\tan ^{6} \mathrm{x}\right) \mathrm{dx}$
$=\int \tan ^{4} \mathrm{x} \mathrm{sec}{ }^{2} \mathrm{x} d \mathrm{x}$
Let $\tan \mathrm{x}=\mathrm{t}$
$\sec ^{2} \mathrm{xdx}=\mathrm{dt}$
$=\int \mathrm{t}^{4} \mathrm{dt}$
$=\left(\mathrm{t}^{5} / 5\right)+\mathrm{C}$
$=(1 / 5) \tan ^{5} \mathrm{x}+\mathrm{C}$
$\mathrm{a}=(1 / 5), \mathrm{b}=0$

Question 15: The integral $\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{d x}{1+\cos x}$ is equal to:
(1) 2
(2) 4
(3) -1
(4) -2

Solution: (1)

$$
\begin{aligned}
& \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{d x}{2 \cos ^{2} \frac{x}{2}} d x=\frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \sec ^{2} \frac{x}{2} d x \\
& =\frac{1}{2}\left[\frac{\tan \frac{x}{2}}{\frac{1}{2}}\right]_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \\
& =\tan \frac{3 \pi}{8}-\tan \frac{\pi}{8} \\
& {\left[\tan \frac{\pi}{8}=\sqrt{\frac{1-\cos \frac{\pi}{4}}{1+\cos \frac{\pi}{4}}}=\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}=\frac{\sqrt{2}-1}{1}\right.} \\
& \left.\tan \frac{3 \pi}{8}=\sqrt{\frac{1-\cos \frac{3 \pi}{4}}{1+\cos \frac{3 \pi}{4}}}=\sqrt{\frac{\sqrt{2}+1}{\sqrt{2}-1}}=\sqrt{2}+1\right] \\
& =(\sqrt{2}+1)-(\sqrt{2}-1) \\
& =2
\end{aligned}
$$

Question 16: The area (in sq. units) of the region $\left\{(x, y): x \geq 0, x+y \leq 3, x^{2} \leq 4 y\right.$ and $\mathrm{y} \leq 1+\mathrm{x}\}$ is :
(1) $3 / 2$
(2) $7 / 3$
(3) $5 / 2$
(4) $59 / 12$

Solution: (3)

Area of the shaded region

$$
\begin{aligned}
& \int_{0}^{1}\left(\sqrt{x}+1-\frac{x^{2}}{4}\right) d x+\int_{1}^{2}\left((3-x)-\frac{x^{2}}{4}\right) d x \\
= & \frac{5}{2}
\end{aligned}
$$

sq units
Question 17: If $(2+\sin x)(d y / d x)+(y+1) \cos x=0$ and $y(0)=1$, then $y(\pi / 2)$ is equal to:
(1) $-2 / 3$
(2) $-1 / 3$
(3) $4 / 3$
(4) $1 / 3$

Solution: (4)

$(2+\sin x)(d y / d x)+(y+1) \cos x=0$
$\mathrm{y}(0)=1, \mathrm{y}(\boldsymbol{\pi} / 2)=$?
$(1 /(y+1)) d y+(\cos x /[2+\sin x]) d x=0$
$\ln |y+1|+\ln (2+\sin x)=\ln C$
$(y+1)(2+\sin x)=C$
Put $\mathrm{x}=0, \mathrm{y}=1$
$(1+1) .2=C \Rightarrow C=4$
Now, $(y+1)(2+\sin x)=4$
$(y+1)=4 / 3$
$y=(4 / 3)-1=1 / 3$
Question 18: Let k be an integer such that the triangle with vertices $(\mathrm{k},-3 \mathrm{k}),(5, \mathrm{k})$ and $(-\mathrm{k}, 2)$ has area 28 sq. units. Then the orthocentre of this triangle is at the point
(1) $(1,3 / 4)$
(2) $(1,-3 / 4)$
(3) $(2,1 / 2)$
(4) $(2,-1 / 2)$

Solution: (3)

$$
\begin{aligned}
& \text { Area }=\left|\frac{1}{2}\right| \begin{array}{ccc}
k & -3 k & 1 \\
5 & k & 1 \\
-k & 2 & 1
\end{array}| |=28 \\
& \left|\begin{array}{ccc}
k-5 & -4 k & 0 \\
5+k & k-2 & 0 \\
-k & 2 & 1
\end{array}\right|= \pm 56 \\
& \left(\mathrm{k}^{2}-7 \mathrm{k}+10\right)+4 \mathrm{k}^{2}+20 \mathrm{k}= \pm 56 \\
& 5 \mathrm{k}^{2}+13 \mathrm{k}-46=0 \\
& 5 \mathrm{k}^{2}+13 \mathrm{k}+66=0
\end{aligned}
$$

$5 \mathrm{k}^{2}+13 \mathrm{k}-46=0$
$\mathrm{k}=[-13 \pm \sqrt{ } 169+920] / 10$
$=2,-4.6[$ reject $]$
For $\mathrm{k}=2$
$(5,2)$

Equation of AD,
$\mathrm{x}=2$
Also equation of BE,
$(y-2)=(1 / 2)(x-5)$
$2 \mathrm{y}-4=\mathrm{x}-5$
$x-2 y-1=0$
Solving (i) \& (ii), $2 \mathrm{y}=1$
$y=1 / 2$
Orthocentre is $(2,1 / 2)$

Question 19: The radius of a circle, having minimum area, which touches the curve $y=4-x^{2}$ and the lines, $y=|x|$ is :
(1) $2(\sqrt{ } 2-1)$
(2) $4(\sqrt{ } 2-1)$
(3) $4(\sqrt{ } 2+1)$
(4) $2(\sqrt{2}+1)$

Solution: (2)

$x^{2}=-(y-4)$
Let a point on the parabola $P\left[(t / 2),\left(4-\left(t^{2} / 4\right)\right)\right]$
Equation of normal at P is
$y+\left(t^{2} / 4\right)-4=(1 / t)(x-[t / 2])$
$x-t y-\left(t^{3} / 4\right)+(7 / 2) t=0$
It passes through centre of circle, say $(0, k)$
$-t k-\left(t^{3} / 4\right)+(7 / 2) t=0---$ - (i)
$\mathrm{t}=0, \mathrm{t}^{2}=14-4 \mathrm{k}$
Radius $=r=|(0-k) / \sqrt{ } 2|$ (Length of perpendicular from $(0, k)$ to $y=x$)
$\mathrm{r}=\mathrm{k} / \sqrt{ } 2$
Equation of circle is $\mathrm{x}^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{k}^{2} / 2$
It passes through point P
$\left(\mathrm{t}^{2} / 4\right)+\left[4-\left(\mathrm{t}^{2} / 4\right)-\mathrm{k}\right]^{2}=\mathrm{k}^{2} / 2$
$\mathrm{t}^{4}+\mathrm{t}^{2}[8 \mathrm{k}-28]+8 \mathrm{k}^{2}-128 \mathrm{k}+256=0$
For $\mathrm{t}=0 \Rightarrow \mathrm{k}^{2}-16 \mathrm{k}+32=0$
$\mathrm{k}=8 \pm 4 \sqrt{ } 2$
$\mathrm{r}=\mathrm{k} / \sqrt{ } 2=4(\sqrt{ } 2-1)($ discarding $4(\sqrt{ } 2+1))$
For $\mathrm{t}= \pm \sqrt{ }(14-4 \mathrm{k})$
$(14-4 \mathrm{k})^{2}+(14-4 \mathrm{k})(8 \mathrm{k}-28)+8 \mathrm{k}^{2}-128 \mathrm{k}+256=0$
$2 \mathrm{k}^{2}+4 \mathrm{k}-15=0$
$\mathrm{k}=[-2 \pm \sqrt{34}] /[2]$
$\mathrm{r}=\mathrm{k} / \sqrt{ } 2=[\sqrt{ } 17-\sqrt{ } 2] / 2$ (Ignoring negative value of r$). .(\mathrm{iv})$
From (iii) \& (iv),
$\mathrm{r}_{\text {min }}=[\sqrt{ } 17-\sqrt{ } 2] / 2$
But from options, 4 ($\sqrt{2}$ - 1$)$

Question 20: The eccentricity of an ellipse whose centre is at the origin is $1 / 2$. If one of its directrices is $x=-4$, then the equation of the normal to it at $(1,(3 / 2))$ is:
(1) $4 x-2 y=1$
(2) $4 x+2 y=7$
(3) $x+2 y=4$
(4) $2 y-x=2$

Solution: (1)

$x=-4$
$\mathrm{e}=1 / 2$
$(-a / e)=-4$
$-\mathrm{a}=-4 * \mathrm{e}$
$\mathrm{a}=2$
Now, $b^{2}=a^{2}\left(1-e^{2}\right)=3$
Equation to ellipse
$\left(x^{2} / 4\right)+\left(y^{2} / 3\right)=1$
Equation of normal is

$$
\frac{x-1}{\frac{1}{4}}=\frac{y-\frac{3}{2}}{\frac{3}{2 \times 3}} \Rightarrow 4 x-2 y-1=0
$$

Question 21: A hyperbola passes through the point $P(\sqrt{ } 2, \sqrt{ } 3)$ and has foci at (± 2, 0). Then the tangent to this hyperbola at P also passes through the point :
(1) $(2 \sqrt{ } 2,3 \sqrt{ } 3)$
(2) $(\sqrt{ } 3, \sqrt{2})$
(3) $(-\sqrt{ } 2,-\sqrt{ } 3)$
(4) $(3 \sqrt{ } 2,2 \sqrt{ } 3)$

Solution: (1)
$\left[\mathrm{x}^{2} / \mathrm{a}^{2}\right]-\left[\mathrm{y}^{2} / \mathrm{b}^{2}\right]=1$
$a^{2}+b^{2}=4$ and $\left[2 / a^{2}\right]-\left[3 / b^{2}\right]=1$
$\left(2 /\left[4-b^{2}\right]\right)-\left(3 /\left[b^{2}\right]\right)=1$
$\mathrm{b}^{2}=3$
$\mathrm{a}^{2}=1$
$\mathrm{x}^{2}-\left(\mathrm{y}^{2} / 3\right)=1$
\therefore Tangent at $P(\sqrt{2}, \sqrt{ } 3)$ is $\sqrt{ }(2) x-(y / \sqrt{ } 3))=1$
Clearly it passes through $(2 \sqrt{ } 2,3 \sqrt{ } 3)$.

Question 22: The distance of the point $(1,3,-7)$ from the plane passing through the point $(1,-1,-1)$, having normal perpendicular to both the lines

$$
\begin{aligned}
& \frac{x-1}{1}=\frac{y+2}{-2}=\frac{z-4}{3} \\
& \frac{x-2}{2}=\frac{y+1}{-1}=\frac{z+7}{-1}
\end{aligned}
$$

(1) $10 / \sqrt{83}$
(2) $5 / \sqrt{ } 83$
(3) $10 / \sqrt{74}$
(4) $20 / \sqrt{ } 74$

Solution: (1)
Let the plane be $\mathrm{a}(\mathrm{x}-1)+\mathrm{b}(\mathrm{y}+1)+\mathrm{c}(\mathrm{z}+1)=0$.
It is perpendicular to the given lines
$\mathrm{a}-2 \mathrm{~b}+3 \mathrm{c}=0$
$2 \mathrm{a}-\mathrm{b}-\mathrm{c}=0$
Solving, $\mathrm{a}: \mathrm{b}: \mathrm{c}=5: 7: 3$
The plane is $5 \mathrm{x}+7 \mathrm{y}+3 \mathrm{z}+5=0$
Distance of $(1,3,-7)$ from this plane $=10 / \sqrt{ } 83$
Question 23: If the image of the point $P(1,-2,3)$ in the plane, $2 x+3 y-4 z+22$
$=0$ measured parallel to the line, $(x / 1)=(y / 4)=(z / 5)$ is Q, then PQ is equal to :
(1) $2 \sqrt{ } 42$
(2) $\sqrt{ } 42$
(3) $6 \sqrt{ } 5$
(4) $3 \sqrt{ } 5$

Solution: (1)

Equation of $\mathrm{PQ}, \quad \frac{x-1}{1}=\frac{y+2}{4}=\frac{z-3}{5}$
Let M be $(\lambda+1,4 \lambda-2,5 \lambda+3)$

As it lies on $2 x+3 y-4 z+22=0$
$\lambda=1$
For $\mathrm{Q}, \lambda=2$
Distance $\mathrm{PQ}=2 \sqrt{ } 1^{2}+4^{2}+5^{2}=2 \sqrt{ } 42$

Question 24: Let $\mathrm{a}=2 \mathrm{i}+\mathrm{j}-2 \mathrm{k}$ and $\mathrm{b}=\mathrm{i}+\mathrm{j}$. Let c be a vector such that $|\mathrm{c}-\mathrm{a}|=3$, $|(\mathrm{a} \times \mathrm{b}) \mathrm{xc}|=3$ and the angle between c and $\mathrm{a} \times \mathrm{b}$ be 30°. Then $\mathrm{a} \cdot \mathrm{c}$ is equal to :
(1) 2
(2) 5
(3) $1 / 8$
(4) $25 / 8$

Solution: (1)

$$
\begin{array}{ll}
|(\vec{a} \times \vec{b}) \times \vec{c}|=3 & \vec{a} \times \vec{b}=2 \hat{i}-2 \hat{j}+\hat{k} \\
\Rightarrow & |\vec{a} \times \vec{b}||\vec{c}| \sin 30^{\circ}=3 \\
\Rightarrow & |\vec{c}|=2 \\
& |\vec{c}-\vec{a}|=3=|\vec{a} \times \vec{b}| \\
\Rightarrow & |\vec{c}|^{2}+|\vec{a}|^{2}-2(\vec{a} \cdot \vec{c})=9 \\
& \vec{a} \cdot \vec{c}=\frac{9-3-2}{2}=2
\end{array}
$$

Question 25: A box contains 15 green and 10 yellow balls. If 10 balls are randomly drawn, one-by-one, with replacement, then the variance of the number of green balls drawn is :
(1) 6
(2) 4
(3) $6 / 25$
(4) $12 / 5$

Solution: (4)
$\mathrm{n}=10$
$\mathrm{p}($ Probability of drawing a green ball $)=15 / 25$
$\mathrm{p}=3 / 5, \mathrm{q}=2 / 5$
$\operatorname{var}(\mathrm{X})=$ n.p.q
$=10 *(3 / 5) *(2 / 5)$
$=10 *(6 / 25)$
$=12 / 5$

Question 26: For three events A, B and C, P (Exactly one of A or B occurs) $=\mathrm{P}$ (Exactly one of B or C occurs) $=\mathrm{P}$ (Exactly one of C or A occurs) $=1 / 4$ and P (All the three events occur simultaneously) $=1 / 16$. Then the probability that at least one of the events occurs is :
(1) $7 / 16$
(2) $7 / 64$
(3) $3 / 16$
(4) $7 / 32$

Solution: (1)
$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=1 / 4$
$P(B)+P(C)-P(B \cap C)=1 / 4$
$\mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{C})=1 / 4$
$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})-\mathrm{P}(\mathrm{B} \cap \mathrm{C})-\mathrm{P}(\mathrm{A} \cap \mathrm{C}=3 / 8$
$\because P(A \cap B \cap C)=1 / 16$
$\therefore \mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=(3 / 8)+(1 / 16)=7 / 16$

Question 27: If two different numbers are taken from the set $\{0,1,2,3, \ldots \ldots, 10\}$; then the probability that their sum, as well as absolute difference, are both multiples of 4 , is :
(1) $12 / 55$
(2) $14 / 45$
(3) $7 / 55$
(4) $6 / 55$

Solution: (4)
Total number of ways $={ }^{11} \mathrm{C}_{2}=55$
Favourable ways are $(0,4),(0,8),(4,8),(2,6),(2,10),(6,10)$
Probability $=6 / 55$
Question 28: If $5\left(\tan ^{2} x-\cos ^{2} x\right)=2 \cos ^{2} x+9$, then the value of $\cos 4 x$ is :
(1) $1 / 3$
(2) $2 / 9$
(3) $-7 / 9$
(4) $-3 / 5$

Solution: (3)
$5\left(\tan ^{2} x-\cos ^{2} x\right)=2 \cos ^{2} x+9$
$5 \sec ^{2} x-5=9 \cos ^{2} x+7$
Let $\cos ^{2} \mathrm{x}=\mathrm{t}$
$(5 / t)=9 t+12$
$9 \mathrm{t}^{2}+12 \mathrm{t}-5=0$
$\mathrm{t}=1 / 3$ as $\mathrm{t} \neq-5 / 3$
$\cos ^{2} \mathrm{x}=1 / 3, \cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1=-1 / 3$
$\cos 4 \mathrm{x}=2 \cos ^{2} 2 \mathrm{x}-1$
$=(2 / 9)-1$
$=-7 / 9$

Question 29: Let a vertical tower $A B$ have its end A on the level ground. Let C be the mid-point of AB and P be a point on the ground such that $\mathrm{AP}=2 \mathrm{AB}$. If $\angle \mathrm{BPC}$ $=\beta$, then $\tan \beta$ is equal to :
(1) $1 / 4$
(2) $2 / 9$
(3) $4 / 9$
(4) $6 / 7$

Solution: (2)

$$
\begin{aligned}
& \tan \theta=1 / 4 \\
& \tan (\theta+\beta)=1 / 2 \\
& \frac{\frac{1}{4}+\tan \beta}{1-\frac{1}{4} \tan \beta}=\frac{1}{2} \\
& \tan \beta=\frac{2}{9}
\end{aligned}
$$

Question 30: The following statement $(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow[(\sim \mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{q}]$ is :
(1) equivalent to $\sim p \rightarrow q$
(2) equivalent to $p \rightarrow \sim q$
(3) a fallacy
(4) a tautology

Solution: (4)

p	q	$p \rightarrow q$	$(\sim p \rightarrow q)$	$(\sim p \rightarrow q) \rightarrow q$	$(p \rightarrow q) \rightarrow[(\sim p \rightarrow q) \rightarrow q]$
T	T	T	T	T	T
T	F	F	T	F	T
F	T	T	T	T	T
F	F	T	F	T	T
(a tautology)					

