JEE Main 2020 Paper

Date : $6^{\text {th }}$ September 2020
Time : 09:00am-12:00 pm
Subject : Maths
Q. 1 The region represented by $\{z=x+i y \in C:|z|-\operatorname{Re}(z) \leq 1\}$ is also given by the inequality:
$\{z=x+i y \in C:|z|-\operatorname{Re}(z) \leq 1\}$
(1) $y^{2} \leq 2\left(x+\frac{1}{2}\right)$
(2) $y^{2} \leq x+\frac{1}{2}$
(3) $y^{2} \geq 2(x+1)$
(4) $y^{2} \geq x+1$

Sol. 1
$\{z=x+i y \in C:|z|-\operatorname{Re}(z) \leq 1\}$
$|z|=\sqrt{x^{2}+y^{2}}$
$\operatorname{Re}(z)=x$
$|z|-\operatorname{Re}(z) \leq 1$
$\Rightarrow \sqrt{x^{2}+y^{2}}-x \leq 1$
$\Rightarrow \sqrt{x^{2}+y^{2}} \leq 1+x$
$\Rightarrow x^{2}+y^{2} \leq 1+x^{2}+2 x$
$\Rightarrow y^{2} \leq 2\left(x+\frac{1}{2}\right)$
Q. 2 The negation of the Boolean expression $p \vee(\sim p \wedge q)$ is equivalent to:
(1) $p \wedge \sim q$
(2) $\sim p \vee \sim q$
(3) $\sim p \vee q$
(4) $\sim p \wedge \sim q$

Sol. 4
$p \vee(\sim p \wedge q)$
$(p \vee \sim p) \wedge(p \vee q)$
$t \wedge(p \vee q)$
$p \vee q$
$\sim(p \vee(\sim p \wedge q))=\sim(p \vee q)$
$=(\sim \mathrm{p}) \wedge(\sim \mathrm{q})$
Q. 3 The general solution of the differential equation $\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+x y \frac{d y}{d x}=0$ is: (where C is a constant of integration)
(1) $\sqrt{1+\mathrm{y}^{2}}+\sqrt{1+\mathrm{x}^{2}}=\frac{1}{2} \log _{\mathrm{e}}\left(\frac{\sqrt{1+\mathrm{x}^{2}}-1}{\sqrt{1+\mathrm{x}^{2}}+1}\right)+\mathrm{C}$
(2) $\sqrt{1+\mathrm{y}^{2}}-\sqrt{1+\mathrm{x}^{2}}=\frac{1}{2} \log _{\mathrm{e}}\left(\frac{\sqrt{1+\mathrm{x}^{2}}-1}{\sqrt{1+\mathrm{x}^{2}}+1}\right)+\mathrm{C}$
(3) $\sqrt{1+\mathrm{y}^{2}}+\sqrt{1+\mathrm{x}^{2}}=\frac{1}{2} \log _{\mathrm{e}}\left(\frac{\sqrt{1+\mathrm{x}^{2}}+1}{\sqrt{1+\mathrm{x}^{2}}-1}\right)+\mathrm{C}$
(4) $\sqrt{1+\mathrm{y}^{2}}-\sqrt{1+\mathrm{x}^{2}}=\frac{1}{2} \log _{\mathrm{e}}\left(\frac{\sqrt{1+\mathrm{x}^{2}}+1}{\sqrt{1+\mathrm{x}^{2}}-1}\right)+\mathrm{C}$

JEE Main 2020 Paper

Sol. 3

$$
\begin{aligned}
& \sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+x y \frac{d y}{d x}=0 \\
& \sqrt{\left(1+x^{2}\right)\left(1+y^{2}\right)}+x y \frac{d y}{d x}=0 \\
& \frac{\sqrt{\left(1+x^{2}\right)} d x}{x}=-\frac{y}{\sqrt{1+y^{2}}} d y
\end{aligned}
$$

Integrate the equation

$$
\begin{array}{ll}
\int \frac{\sqrt{1+x^{2}}}{x} d x=-\int \frac{y}{\sqrt{1+y^{2}}} d y \\
1+x^{2}=t^{2} & 1+y^{2}=z^{2} \\
2 x d x=2 t d t & 2 y d y=2 z d z \\
d x=\frac{t}{x} d t & \\
\int \frac{t . t d t}{t^{2}-1}=-\int \frac{z d x}{z} & \\
\int \frac{t^{2}-1+1}{t^{2}-1} d t=-z+c \\
\int 1 d t+\int \frac{1}{t^{2}-1} d t=-z+c \\
t+\frac{1}{2} \ln \left(\frac{t-1}{t+1}\right)=-z+c & \\
\sqrt{1+x^{2}}+\frac{1}{2} \ln \left(\frac{\sqrt{1+x^{2}}-1}{\sqrt{1+x^{2}}+1}\right)=-\sqrt{1+y^{2}}+c & \\
\sqrt{1+y^{2}}+\sqrt{1+x^{2}}=\frac{1}{2} \ln \left(\frac{\sqrt{x^{2}+1}+1}{\sqrt{x^{2}+1}-1}\right)+c
\end{array}
$$

Q. 4 Let L_{1} be a tangent to the parabola $y^{2}=4(x+1)$ and L_{2} be a tangent to the parabola $y^{2}=8(x+2)$ such that L_{1} and L_{2} intersect at right angles. Then L_{1} and L_{2} meet on the straight line:
(1) $x+2 y=0$
(2) $x+2=0$
(3) $2 x+1=0$
(4) $x+3=0$

Sol. 4
Let t_{1} tangent of $y^{2}=4(x+1)$
$L_{1}: t_{1} y=(x+1)+t_{1}{ }^{2}$
and t_{2} tangent of $y^{2}=8(x+2)$
$L_{2}: t_{2} y=(x+2)+2 t_{2}{ }^{2}$
$\mathrm{L}_{1} \perp \mathrm{~L}_{2}$

JEE Main 2020 Paper

$$
\begin{aligned}
& \frac{1}{t_{1}} \cdot \frac{1}{t_{2}}=-1 \\
& t_{1} t_{2}=-1 \\
& t_{2}(i)-t_{1}(i i) \\
& t_{1} t_{2} y=t_{2}(x+1)+t_{2} \cdot t_{1}^{2} \\
& t_{1} t_{2} y=t_{1}(x+2)+2 t_{2}^{2} \cdot t_{1} \\
& -\quad- \\
& \hline\left(t_{2}-t_{1}\right) x+\left(t_{2}-2 t_{1}\right)+t_{2} t_{1}\left(t_{1}-2 t_{2}\right)=0 \\
& \left(t_{2}-t_{1}\right) x+\left(t_{2}-2 t_{1}\right)-\left(t_{1}-2 t_{2}\right)=0 \\
& \left(t_{2}-t_{1}\right) x+3 t_{2}-3 t_{1}=0 \\
& \Rightarrow x+3=0
\end{aligned}
$$

Q. 5 The area (in sq. units) of the region $A=\left\{(x, y):|x|+|y| \leq 1,2 y^{2} \geq|x|\right\}$
(1) $\frac{1}{6}$
(2) $\frac{5}{6}$
(3) $\frac{1}{3}$
(4) $\frac{7}{6}$

Sol. 2

Total area $=4 \int_{0}^{1 / 2}\left[(1-x)-\left(\sqrt{\frac{x}{2}}\right)\right] d x$
$=4\left[\left.x-\frac{x^{2}}{2}-\frac{1}{\sqrt{2}} \frac{x^{3 / 2}}{3 / 2} \right\rvert\, \begin{array}{c}1 / 2 \\ 0\end{array}\right]$
$=4\left[\frac{1}{2}-\frac{1}{8}-\frac{\sqrt{2}}{3}\left(\frac{1}{2}\right)^{3 / 2}\right]$
$=4 \times \frac{5}{24}=\frac{5}{6}$
Q. 6 The shortest distance between the lines $\frac{x-1}{0}=\frac{y+1}{-1}=\frac{z}{1}$ and $x+y+z+1=0$, $2 x-y+z+3=0$ is:
(1) 1
(2) $\frac{1}{\sqrt{2}}$
(3) $\frac{1}{\sqrt{3}}$
(4) $\frac{1}{2}$

JEE Main 2020 Paper

Sol. 3

Plane through line of intersection is
$x+y+z+1+\lambda(2 x-y+z+3)=0$
It should be parallel to given line
$0(1+2 \lambda)-1(1-\lambda)+1(1+\lambda)=0 \Rightarrow \lambda=0$
Plane: $x+y+z+1=0$
Shortest distance of $(1,-1,0)$ from this plane
$=\frac{|1-1+0+1|}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}$
Q. 7 Let a, b, c, d and p be any non zero distinct real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)=0$. Then:
(1) a, c, p are in G.P.
(2) a, b, c, d are in G.P.
(3) a, b, c, d are in A.P.
(4) a, c, p are in A.P.

Sol. 2
$\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)=0$
$\left(a^{2} p^{2}-2 a b p+b^{2}\right]+\left[b^{2} p^{2}-2 b c p+c^{2}\right]+\left[c^{2} p^{2}-2 c d p+d^{2}\right]=0$
$(a p-b)^{2}+(b p-c)^{2}+(c p-d)^{2}=0$
$a p=b$
$\frac{b}{a}=\frac{c}{b}=\frac{d}{c}=p$
$b p=c$
$c p=d$
a, b, c, d are in G.P.
Q. 8 Two families with three members each and one family with four members are to be seated in a row. In how many ways can they be seated so that the same family members are not separated?
(1) 2 ! $3!4$!
(2) $(3!)^{3} \cdot(4!)$
(3) $3!(4!)^{3}$
$(4)(3!)^{2} \cdot(4!)$

Sol. 2
Total numbers in three familes $=3+3+4=10$
so total arrangement $=10$!

Family 1
3

Family 2
3

Family 3
4

Favourable cases
$=\underset{\text { Arrangement of } 3 \text { Families }}{3!} \times \underset{\text { Interval Arrangement of }}{ } \times 4!$
Arrangement of 3 Families Interval Arrangement of families memebers
$=(3!)^{3} \cdot(4!)$
Q. 9 The values of λ and μ for which the system of linear equations
$x+y+z=2$
$x+2 y+3 z=5$
$x+3 y+\lambda z=\mu$
has infinitely many solutions are, respectively:
(1) 6 and 8
(2) 5 and 8
(3) 5 and 7
(4) 4 and 9

JEE Main 2020 Paper

Sol. 2
$x+y+z=2$
$x+2 y+3 z=5$
$x+3 y+\lambda z=\mu$
has infinitely many solutions

$$
\begin{aligned}
& \Delta=\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & \lambda
\end{array}\right|=0 \\
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \\
& \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1} \\
& \left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 2 & \lambda-1
\end{array}\right|=0 \\
& (\lambda-1-4)=0 \\
& \Rightarrow \lambda=5
\end{aligned}
$$

$$
\Delta_{3}=\left|\begin{array}{ccc}
1 & 1 & 2 \\
1 & 2 & 5 \\
1 & 3 & \mu
\end{array}\right|=0
$$

$$
R_{2} \rightarrow R_{2}-R_{1}
$$

$$
R_{3} \rightarrow R_{3}-R_{1}
$$

$$
\left|\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & 3 \\
0 & 2 & \mu-2
\end{array}\right|=0
$$

$$
(\mu-2-6)=0
$$

$$
\Rightarrow \mu=8
$$

$$
\lambda=5, \mu=8
$$

Q. 10 Let m and M be respectively the minimum and maximum values of

$$
\left|\begin{array}{ccc}
\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\
1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\
\cos ^{2} x & \sin ^{2} x & 1+\sin 2 x
\end{array}\right|
$$

Then the ordered pair (m, M) is equal to:
(1) $(-3,-1)$
(2) $(-4,-1)$
$(3)(1,3)$
$(4)(-3,3)$

Sol. 1

$$
\left|\begin{array}{ccc}
\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\
1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\
\cos ^{2} x & \sin ^{2} x & 1+\sin 2 x
\end{array}\right|
$$

JEE Main 2020 Paper

$R_{1} \rightarrow R_{1}-R_{2}, R_{3} \rightarrow R_{3}-R_{2}$
$\left|\begin{array}{ccc}-1 & 1 & 0 \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ -1 & 0 & 1\end{array}\right|$
$\Rightarrow-1\left(\sin ^{2} x\right)-1\left(1+\cos ^{2} x+\sin 2 x\right)$
$\Rightarrow-\sin ^{2} x-\cos ^{2} x-1-\sin 2 x$
$=-2-\sin 2 x$
\therefore minimum value when $\sin 2 x=1$
$m=-2-1=-3$
\therefore Maximum value when $\sin 2 x=-1$
$(m, M)=(-3,-1)$
Q. 11 A ray of light coming from the point $(2,2 \sqrt{3})$ is incident at an angle 30° on the line $x=$ 1 at the point A. The ray gets reflected on the line $x=1$ and meets x-axis at the point B. Then, the line $A B$ passes through the point:
(1) $(4,-\sqrt{3})$
(2) $\left(3,-\frac{1}{\sqrt{3}}\right)$
(3) $(3,-\sqrt{3})$
(4) $\left(4,-\frac{\sqrt{3}}{2}\right)$

Sol. 3

Equation of line $P^{\prime} B$ passing through $(0,2 \sqrt{3})$
$\left(y-y_{1}\right)=m\left(x-x_{1}\right)$
$(y-2 \sqrt{3})=\tan 120^{\circ}(x-0)$
$y-2 \sqrt{3}=-\sqrt{3} x$
$\sqrt{3} x+y=2 \sqrt{3}$
Check options
($3,-\sqrt{3}$) satisfy the line
Q. 12 Out of 11 consecutive natural numbers if three numbers are selected at random (without repetition), then the probability that they are in A.P. with positive common difference, is:
(1) $\frac{10}{99}$
(2) $\frac{5}{33}$
(3) $\frac{15}{101}$
(4) $\frac{5}{101}$

JEE Main 2020 Paper

Sol. 2

Case-1

E, O, E, O, E, O, E, O, E, O, E
$2 \mathrm{~b}=\mathrm{a}+\mathrm{c} \rightarrow$ Even
\Rightarrow Both a and c should be either even or odd.
$\mathrm{P}=\frac{{ }^{6} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{2}}{{ }^{11} \mathrm{C}_{3}}=\frac{5}{33}$

Case - 2

O, E, O, E, O, E, O, E, O, E, O
$\mathrm{P}=\frac{{ }^{5} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{2}}{{ }^{11} \mathrm{C}_{3}}=\frac{5}{33}$
Total probability $=\frac{1}{2} \times \frac{5}{33}+\frac{1}{2} \times \frac{5}{33}=\frac{5}{33}$
Q. 13 If $f(x+y)=f(x) f(y)$ and $\sum_{x=1}^{\infty} f(x)=2, x, y \in N$, where N is the set of all natural number, then the value of $\frac{f(4)}{f(2)}$ is :
(1) $\frac{2}{3}$
(2) $\frac{1}{9}$
(3) $\frac{1}{3}$
(4) $\frac{4}{9}$

Sol. 4

$$
f(x+y)=f(x) f(y)
$$

* Put $x=1, y=1$

$$
\mathrm{f}(2)=(\mathrm{f}(1))^{2}
$$

* Put $x=2, y=1$
$f(3)=f(2) . f(1)=f((1))^{3}$
* Put $x=2, y=2$
$f(4)=f((2))^{2}=f((1))^{4}$
$f(n)=(f(1))^{n}$
$\sum_{x=1}^{\infty} f(x)=f(1)+f(2)+f(3)+$ \qquad $=2$
$\Rightarrow f(1)+f((1))^{2}+f((1))^{3} \ldots \ldots=2$
$\frac{f(1)}{1-f(1)}=2$
$f(1)=2 / 3$
$f(2)=\left(\frac{2}{3}\right)^{2}, f(4)=\left(\frac{2}{3}\right)^{4}$
$\frac{f(4)}{f(2)}=\frac{(2 / 3)^{4}}{(2 / 3)^{2}}=\frac{4}{9}$

JEE Main 2020 Paper

Q. 14 If $\{p\}$ denotes the fractional part of the number p, then $\left\{\frac{3^{200}}{8}\right\}$, is equal to :
(1) $\frac{5}{8}$
(2) $\frac{1}{8}$
(3) $\frac{7}{8}$
(4) $\frac{3}{8}$

Sol. 2
$\left\{\frac{3^{200}}{8}\right\}=\left\{\frac{9^{100}}{8}\right\}=\left\{\frac{(8+1)^{100}}{8}\right\}$
$\left\{\frac{{ }^{100} \mathrm{C}_{0} 1^{100}+{ }^{100} \mathrm{C}_{1}(8) 1^{99}+{ }^{100} \mathrm{C}_{2}\left(8^{2}\right) 1^{98}+\ldots+{ }^{100} \mathrm{C}_{100} 8^{100}}{8}\right\}$
$=\left\{\frac{{ }^{100} \mathrm{C}_{0} 1^{100}+8 \mathrm{k}}{8}\right\}$
$=\left\{\frac{1+8 \mathrm{k}}{8}\right\}=\left\{\frac{1}{8}+\mathrm{k}\right\} \mathrm{K} \in \mathrm{I}$
$=\frac{1}{8}$
Q. 15 Which of the following points lies on the locus of the foot of perpedicular drawn upon any tangent to the ellipse, $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ from any of its foci ?
(1) $(-1, \sqrt{3})$
(2) $(-2, \sqrt{3})$
(3) $(-1, \sqrt{2})$
(4) $(1,2)$

Sol. 1
Let foot of perpendicular is (h,k)

$\frac{x^{2}}{4}+\frac{y^{2}}{2}=1 \quad$ (Given)
$\mathrm{a}=2, \mathrm{~b}=\sqrt{2}, \mathrm{e}=\sqrt{1-\frac{2}{4}}=\frac{1}{\sqrt{2}}$
\therefore Focus $(\mathrm{ae}, 0)=(\sqrt{2}, 0)$
Equation of tangent
$y=m x+\sqrt{a^{2} m^{2}+b^{2}}$
$y=m x+\sqrt{4 m^{2}+2}$

JEE Main 2020 Paper

Passes throguh $(\mathrm{h}, \mathrm{k})(k-m h)^{2}=4 m^{2}+2$
line perpendicular to tangent will have slope
$-\frac{1}{m}$
$y-0=-\frac{1}{m}(x-\sqrt{2})$
$m y=-x+\sqrt{2}$
$(\mathrm{h}+\mathrm{mk})^{2}=2$
Add equaiton (1) and (2) $\mathrm{k}^{2}\left(1+\mathrm{m}^{2}\right)+\mathrm{h}^{2}\left(1+\mathrm{m}^{2}\right)=4\left(1+\mathrm{m}^{2}\right)$
$h^{2}+k^{2}=4$
$x^{2}+y^{2}=4$ (Auxilary circle)
$\therefore(-1, \sqrt{3})$ lies on the locus.
Q. $16 \lim _{x \rightarrow 1}\left(\frac{\int_{0}^{(x-1)^{2}} t \cos \left(t^{2}\right) d t}{(x-1) \sin (x-1)}\right)$
(1) is equal to 1
(2) is equal to $\frac{1}{2}$
(3) does not xist
(4) is equal to $-\frac{1}{2}$

Sol
Bouns
$\lim _{x \rightarrow 1}\left(\frac{\int_{0}^{(x-1)^{2}} t \cos \left(t^{2}\right) d t}{(x-1) \sin (x-1)}\right)$
Using L-Hopital rule
$=\lim _{x \rightarrow 1} \frac{2(x-1) \cdot(x-1)^{2} \cos (x-1)^{4}-0}{(x-1) \cdot \cos (x-1)+\sin (x-1)}\left(\frac{0}{0}\right)$
$=\lim _{x \rightarrow 1} \frac{2(x-1)^{3} \cdot \cos (x-1)^{4}}{(x-1)\left[\cos (x-1)+\frac{\sin (x-1)}{(x-1)}\right]}$
$=\lim _{x \rightarrow 1} \frac{2(x-1)^{2} \cos (x-1)^{4}}{\cos (x-1)+\frac{\sin (x-1)}{(x-1)}}$
on taking limit
$=\frac{0}{1+1}=0$

JEE Main 2020 Paper

Q. 17 If $\sum_{i=1}^{n}\left(x_{i}-a\right)=n$ and $\sum_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a,(n, a>1)$ then the standard deviation of n observations $x_{1}, x_{2}, \ldots, x_{n}$ is :
(1) $n \sqrt{a-1}$
(2) $\sqrt{n a-1}$
(3) $a-1$
(4) $\sqrt{a-1}$

Sol. 4
S.D. $=\sqrt{\frac{\Sigma\left(x_{i}-a\right)^{2}}{n}-\left(\frac{\Sigma\left(x_{i}-a\right)}{n}\right)^{2}}$
$=\sqrt{\left(\frac{n a}{n}\right)-\left(\frac{n}{n}\right)^{2}}=\sqrt{a-1}$
Q. 18 If α and β be two roots of the equation $x^{2}-64 x+256=0$. Then the value of $\left(\frac{\alpha^{3}}{\beta^{5}}\right)^{1 / 8}+\left(\frac{\beta^{3}}{\alpha^{5}}\right)^{1 / 8}$ is :
(1) 1
(2) 3
(3) 2
(4) 4

Sol. 3
$x^{2}-64 x+256=0$
$\alpha+\beta=64$
$\alpha \beta=256$
$\left(\frac{\alpha^{3}}{\beta^{5}}\right)^{1 / 8}+\left(\frac{\beta^{3}}{\alpha^{5}}\right)^{1 / 8}$
$=\frac{\alpha+\beta}{(\alpha \beta)^{5 / 8}}=\frac{64}{(256)^{5 / 8}}=\frac{64}{32}=2$
Q. 19 The position of a moving car at time t is given $b y f(t)=a t^{2}+b t+c, t>0$, where a, b and c are real numbers greater than 1 . Then the average speed of the car over the time interval $\left[t_{1}, t_{2}\right]$ is attained at the point :
(1) $\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) / 2$
(2) $2 a\left(t_{1}+t_{2}\right)+b$
(3) $\left(t_{2}-t_{1}\right) / 2$
(4) $a\left(t_{2}-t_{1}\right)+b$

Sol. 1
$f^{\prime}(t)=V_{a v}=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}$
$=\frac{a\left(t_{2}^{2}-t_{1}^{2}\right)+b\left(t_{2}-t_{1}\right)}{t_{2}-t_{1}}$
$=a\left(t_{1}+t_{2}\right)+b=2 a t+b$
$\mathrm{t}=\frac{\mathrm{t}_{1}+\mathrm{t}_{2}}{2}$
Q. 20 If $I_{1}=\int_{0}^{1}\left(1-x^{50}\right)^{100} d x$ and $I_{2}=\int_{0}^{1}\left(1-x^{50}\right)^{101} d x$ such that $I_{2}=\alpha I_{1}$ then α equals to :
(1) $\frac{5050}{5049}$
(2) $\frac{5050}{5051}$
(3) $\frac{5051}{5050}$
(4) $\frac{5049}{5050}$

JEE Main 2020 Paper

Sol. 2
$I_{1}=\int_{0}^{1}\left(1-x^{50}\right)^{100} d x$
$I_{2}=\int_{0}^{1}\left(1-x^{50}\right)\left(1-x^{50}\right)^{100} d x$
$=\int_{0}^{1}\left(1-x^{50}\right)^{100} d x-\int_{0}^{1} x^{50}\left(1-x^{50}\right)^{100} d x$
$I_{2}=I_{1}-\int_{0}^{1} \underset{I}{x} \cdot \underbrace{x^{49}\left(1-x^{50}\right)^{100}}_{\mathrm{II}} d x$
By using by parts
$1-x^{50}=t$
$\Rightarrow \mathrm{x}^{49} \mathrm{dx}=\frac{-\mathrm{dt}}{50}$
$I_{2}=I_{1}-\left[x\left(\frac{-1}{50}\right) \frac{\left(1-x^{50}\right)^{101}}{101}\right]_{0}^{1}+\int_{0}^{1}\left(\frac{-1}{50}\right) \frac{\left(1-x^{50}\right)^{101}}{101} d x$
$I_{2}=I_{1}-0+\frac{\int_{0}^{1}\left(1-x^{50}\right)^{101}}{(-5050)} d x$
$\mathrm{I}_{2}=\mathrm{I}_{1}-\frac{\mathrm{I}_{2}}{5050}$
$\frac{5051}{5050} \mathrm{I}_{2}=\mathrm{I}_{1}$
$\mathrm{I}_{2}=\frac{5050}{5051} \mathrm{I}_{1}$
$\alpha=\frac{5050}{5051}$
Q. 21 If \vec{a} and \vec{b} are unit vectors, then the greatest value of $\sqrt{3}|\vec{a}+\vec{b}|+\vec{a}-\vec{b} \mid$ is \qquad .
Sol. 4

$$
\begin{aligned}
& \sqrt{3}|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}| \\
& =\sqrt{3}(\sqrt{2+2 \cos \theta})+\sqrt{2-2 \cos \theta} \\
& =\sqrt{6}(\sqrt{1+\cos \theta})+\sqrt{2}(\sqrt{1-\cos \theta}) \\
& \sqrt{6}\left(\sqrt{1+2 \cos ^{2} \frac{\theta}{2}-1}\right)+\sqrt{2}\left(\sqrt{1-1+2 \sin ^{2} \frac{\theta}{2}}\right) \\
& \sqrt{6}\left(\sqrt{2 \cos ^{2} \frac{\theta}{2}}\right)+\sqrt{2}\left(\sqrt{2 \sin ^{2} \frac{\theta}{2}}\right)
\end{aligned}
$$

$\left\{\right.$ greatest value of trigonometric function $\left.a \cos \theta+b \sin \theta \leq \sqrt{a^{2}+b^{2}}\right\}$
$=2 \sqrt{3}\left|\cos \frac{\theta}{2}\right|+2\left|\sin \frac{\theta}{2}\right| \leq \sqrt{(2 \sqrt{3})^{2}+(2)^{2}}=4$

JEE Main 2020 Paper

Q. 22 Let $A D$ and $B C$ be two vertical poles at A and B respectively on a horizontal ground. If $A D=8 \mathrm{~m}, \mathrm{BC}=11 \mathrm{~m}$ and $A B=10 \mathrm{~m}$; then the distance (in meters) of a point M on $A B$ from the point A such that $M D^{2}+M C^{2}$ is minimum is \qquad .
Sol. 5

$$
\mathrm{K}-10 \longrightarrow
$$

$(M D)^{2}=x^{2}+8^{2}=x^{2}+64$
$(M C)^{2}=(10-x)^{2}+(11)^{2}=(x-10)^{2}+121$
$f(x)=(M D)^{2}+(M C)^{2}=x^{2}+64+(x-10)^{2}+(121)$
Differentiate
$f^{\prime}(x)=0$
$2 x+2(x-10)=0$
$4 x=20 \Rightarrow x=5$
$\mathrm{f"}(\mathrm{x})=4>0$
at $x=5$ point of minima
Q. 23 Let $f: R \rightarrow R$ be defined as

$$
f(x)=\left\{\begin{array}{cc}
x^{5} \sin \left(\frac{1}{x}\right)+5 x^{2}, & x<0 \\
0, & x=0 \\
x^{5} \cos \left(\frac{1}{x}\right)+\lambda x^{2}, & x>0
\end{array}\right.
$$

The value of λ for which $f^{\prime \prime}(0)$ exists, is \qquad .
Sol. 5

$$
f(x)=\left\{\begin{array}{cc}
x^{5} \sin \left(\frac{1}{x}\right)+5 x^{2}, & x<0 \\
0, & x=0 \\
x^{5} \cos \left(\frac{1}{x}\right)+\lambda x^{2}, & x>0
\end{array}\right.
$$

$$
f^{\prime}(x)= \begin{cases}5 x^{4} \sin \left(\frac{1}{x}\right)-x^{3} \cos \left(\frac{1}{x}\right)+10 x, x<0 \\ 0, & x=0 \\ 5 x^{4} \cos \left(\frac{1}{x}\right)+x^{3} \sin \left(\frac{1}{x}\right)+2 \lambda x, x>0\end{cases}
$$

JEE Main 2020 Paper

$f^{\prime \prime}(x)=\left\{\begin{array}{c}20 x^{3} \sin \left(\frac{1}{x}\right)-5 x^{2} \cos \left(\frac{1}{x}\right)-3 x^{2} \cos \left(\frac{1}{x}\right)-x \sin \left(\frac{1}{x}\right)+10, x<0 \\ 0, x=0 \\ 20 x^{3} \cos \left(\frac{1}{x}\right)+5 x^{2} \sin \left(\frac{1}{x}\right)+3 x^{2} \sin \left(\frac{1}{x}\right)-x \cos \left(\frac{1}{x}\right)+2 \lambda, x>0\end{array}\right.$
if $\mathrm{f}^{\prime \prime}(0)$ exists then
$\mathrm{f}^{\prime \prime}\left(0^{+}\right)=\mathrm{f}^{\prime \prime}\left(0^{-}\right)$
$2 \lambda=10 \Rightarrow \lambda=5$
Q. 24 The angle of elevation of the top of a hill from a point on the horizontal plane passing through the foot of the hill is found to be 45°. After walking a distance of 80 meters towards the top, up a slope inclined at an angle of 30° to the horizontal plane, the angle of elevation of the top of the hill becomes 75°. Then the height of the hill (in meters) is

Sol. 80

$x=80 \cos 30^{\circ}=40 \sqrt{3}$
$y=80 \sin 30^{\circ}=40$
In $\triangle A D C$
$\tan 45^{\circ}=\frac{h}{x+z} \Rightarrow h=x+z$
$\Rightarrow \mathrm{h}=40 \sqrt{3}+\mathrm{z}$
In $\triangle E D F$
$\tan 75^{\circ} \frac{h-y}{z}$
$2+\sqrt{3}=\frac{h-40}{z} \Rightarrow z=\frac{h-40}{2+\sqrt{3}}$.
Put the value of z from (i)
$h-40 \sqrt{3}=\frac{h-40}{2+\sqrt{3}}$
$h(1+\sqrt{3})=40(2 \sqrt{3}+3-1)$
$h(1+\sqrt{3})=80(1+\sqrt{3})$

JEE Main 2020 Paper

$$
h=80
$$

Q. 25 Set A has m elements and set B has n elements. If the total number of subsets of A is

Sol. 28
$A \& B$ are two sets having m, n element respectively
No. of subsets of $A=2^{m}$
No. of subsets of $B=2^{n}$
$2^{m}=2^{n}+112$
$2^{m}-2^{n}=112$
$2^{n}\left(2^{m-n}-1\right)=112$
$2^{n}\left(2^{m-n}-1\right)=2^{4}\left(2^{3}-1\right)$
$\mathrm{n}=4 \quad \mathrm{~m}-\mathrm{n}=3$
$\mathrm{m}-4=3 \Rightarrow \mathrm{~m}=7$
m. $\mathrm{n}=28$

