Date : 6th September 2020 **Time** : 09 : 00 am - 12 : 00 pm **Subject** : Maths

Q.1 The region represented by $\{z = x + iy \in C : |z| - Re(z) \le 1\}$ is also given by the inequality: $\{z = x + iy \in C : |z| - Re(z) \le 1\}$ (1) $y^2 \le 2\left(x + \frac{1}{2}\right)$ (2) $y^2 \le x + \frac{1}{2}$ (3) $y^2 \ge 2(x + 1)$ (4) $y^2 \ge x + 1$ Sol. ${z = x + iy \in C : |z| - Re(z) \le 1}$ $|z| = \sqrt{x^2 + y^2}$ Re(z) = x $|z| - \operatorname{Re}(z) \leq 1$ $\Rightarrow \sqrt{x^2 + y^2} - x \le 1$ $\Rightarrow \sqrt{x^2 + y^2} \le 1 + x$ $\Rightarrow x^2 + y^2 \le 1 + x^2 + 2x$ $\Rightarrow \mathbf{y}^2 \le \mathbf{2} \left(\mathbf{x} + \frac{1}{2} \right)$ The negation of the Boolean expression $p \lor (\sim p \land q)$ is equivalent to: Q.2 (3) ~p ∨ q (1) p ∧ ~q (2) ~p ∨ ~q (4) ~p ∧ ~q Sol. $p \lor (\sim p \land q)$ $(p \lor \sim p) \land (p \lor q)$ $t \wedge (p \vee q)$ $p \vee q$ $\sim (p \lor (\sim p \land q)) = \sim (p \lor q)$ $= (\sim p) \land (\sim q)$ The general solution of the differential equation $\sqrt{1 + x^2 + y^2 + x^2y^2} + xy\frac{dy}{dx} = 0$ is: Q.3 (where C is a constant of integration) (1) $\sqrt{1+y^2} + \sqrt{1+x^2} = \frac{1}{2}\log_e\left(\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}\right) + C$ (2) $\sqrt{1+y^2} - \sqrt{1+x^2} = \frac{1}{2}\log_e\left(\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}\right) + C$ (3) $\sqrt{1+y^2} + \sqrt{1+x^2} = \frac{1}{2}\log_e\left(\frac{\sqrt{1+x^2}+1}{\sqrt{1+x^2}-1}\right) + C$ (4) $\sqrt{1+y^2} - \sqrt{1+x^2} = \frac{1}{2}\log_e\left(\frac{\sqrt{1+x^2}+1}{\sqrt{1+x^2}-1}\right) + C$ 6th September 2020 | (Shift-1), Maths Page | 111

Sol. 3

$$\sqrt{1 + x^{2} + y^{2} + x^{2}y^{2}} + xy\frac{dy}{dx} = 0$$
$$\sqrt{(1 + x^{2})(1 + y^{2})} + xy\frac{dy}{dx} = 0$$
$$\sqrt{(1 + x^{2})}dx - \frac{y}{dx} = 0$$

$$\frac{\sqrt{(1+x^2)dx}}{x} = -\frac{1}{\sqrt{1+y^2}} dy$$

Integrate the equation

 $\int \frac{\sqrt{1+x^2}}{x} dx = -\int \frac{y}{\sqrt{1+y^2}} dy$ $1 + x^2 = t^2$ 2xdx = 2tdt $dx = \frac{t}{x} dt$ $\int \frac{ttdt}{t^2 - 1} = -\int \frac{zdx}{z}$ $\int \frac{t^2 - 1 + 1}{t^2 - 1} dt = -z + c$ $\int 1dt + \int \frac{1}{t^2 - 1} dt = -z + c$ $t + \frac{1}{2} \ln \left(\frac{t-1}{t+1}\right) = -z + c$ $\sqrt{1+x^2} + \frac{1}{2} \ln \left(\frac{\sqrt{1+x^2} - 1}{\sqrt{1+x^2} + 1}\right) = -\sqrt{1+y^2} + c$

$$\sqrt{1 + y^2} + \sqrt{1 + x^2} = \frac{1}{2} \ln \left(\frac{\sqrt{x^2 + 1} + 1}{\sqrt{x^2 + 1} - 1} \right) + c$$

Q.4 Let L_1 be a tangent to the parabola $y^2 = 4(x + 1)$ and L_2 be a tangent to the parabola $y^2 = 8(x + 2)$ such that L_1 and L_2 intersect at right angles. Then L_1 and L_2 meet on the straight line:

(1) x + 2y = 0 (2) x + 2 = 0 (3) 2x + 1 = 0 (4) x + 3 = 0Sol. 4 Let t_1 tangent of $y^2 = 4(x + 1)$ $L_1 : t_1y = (x + 1) + t_1^2$ (i) and t_2 tangent of $y^2 = 8 (x + 2)$ $L_2 : t_2y = (x + 2) + 2 t_2^2$ $L_1 \perp L_2$

6th September 2020 | (Shift-1), Maths

 $1 + y^2 = z^2$

6th September 2020 | (Shift-1), Maths

 $\begin{array}{l} x+y+z=2\\ x+2y+3z=5\\ x+3y+\lambda z=\mu\\ \text{has infinitely many solutions} \end{array}$

 $\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & \lambda \end{vmatrix} = 0$ $R_2 \rightarrow R_2 - R_1$ $R_3 \rightarrow R_3 - R_1$ $\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & \lambda - 1 \end{vmatrix} = 0$

$$(\lambda - 1 - 4) = 0$$

 $\Rightarrow \lambda = 5$

$$\Delta_{3} = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 1 & 3 & \mu \end{vmatrix} = 0$$
$$R_{2} \rightarrow R_{2} - R_{1}$$
$$R_{3} \rightarrow R_{3} - R_{1}$$

 $\begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 2 & \mu - 2 \end{vmatrix} = 0$ $(\mu - 2 - 6) = 0$ $\Rightarrow \mu = 8$ $\lambda = 5, \mu = 8$

Q.10 Let m and M be respectively the minimum and maximum values of

 $\begin{vmatrix} \cos^{2} x & 1 + \sin^{2} x & \sin 2x \\ 1 + \cos^{2} x & \sin^{2} x & \sin 2x \\ \cos^{2} x & \sin^{2} x & 1 + \sin 2x \end{vmatrix}$ Then the ordered pair (m, M) is equal to: (1) (-3, -1) (2) (-4, -1) (3) (1, 3) (4) (-3, 3) **Sol.** 1 $\begin{vmatrix} \cos^{2} x & 1 + \sin^{2} x & \sin 2x \\ 1 + \cos^{2} x & \sin^{2} x & \sin 2x \\ \cos^{2} x & \sin^{2} x & 1 + \sin 2x \end{vmatrix}$

$$\begin{array}{c|c} R_1 \rightarrow R_1 - R_2 , R_3 \rightarrow R_3 - R_2 \\ \hline -1 & 1 & 0 \\ 1 + \cos^2 x & \sin^2 x & \sin 2x \\ -1 & 0 & 1 \\ \hline \Rightarrow -1(\sin^2 x) - 1(1 + \cos^2 x + \sin 2x) \\ \Rightarrow -\sin^2 x - \cos^2 x - 1 - \sin 2x \\ = -2 - \sin 2x \\ \therefore \text{ minimum value when } \sin 2x = 1 \\ m = -2 - 1 = -3 \\ \therefore \text{ Maximum value when } \sin 2x = -1 \\ (m, M) = (-3, -1) \end{array}$$

Q.11 A ray of light coming from the point $(2, 2\sqrt{3})$ is incident at an angle 30° on the line x = 1 at the point A. The ray gets reflected on the line x = 1 and meets x-axis at the point B. Then, the line AB passes through the point:

(1)
$$(4, -\sqrt{3})$$
 (2) $\left(3, -\frac{1}{\sqrt{3}}\right)$ (3) $(3, -\sqrt{3})$ (4) $\left(4, -\frac{\sqrt{3}}{2}\right)$
Sol. 3
P'(0,2³)
Fequation of line P'B passing through (0,2 $\sqrt{3}$)
($y-2\sqrt{3}$) = tan 120° (x - 0)
y-2 $\sqrt{3}$ = $-\sqrt{3}x$
 $\sqrt{3}x + y = 2\sqrt{3}$
Check options
(3, $-\sqrt{3}$) satisfy the line
Q.12 Out of 11 consecutive natural numbers if three numbers are selected at random (without repetition), then the probability that they are in A.P. with positive common difference, is:
(1) $\frac{10}{99}$ (2) $\frac{5}{33}$ (3) $\frac{15}{101}$ (4) $\frac{5}{101}$
Page | 116

B

(4) $\frac{3}{8}$

Q.14 If {p} denotes the fractional part of the number p, then $\left\{\frac{3^{200}}{8}\right\}$, is equal to :

(1)
$$\frac{5}{8}$$
 (2) $\frac{1}{8}$ (3) $\frac{7}{8}$
Sol. 2
 $\left\{\frac{3^{200}}{8}\right\} = \left\{\frac{9^{100}}{8}\right\} = \left\{\frac{(8+1)^{100}}{8}\right\}$
 $\left\{\frac{1^{100}C_0 1^{100} + {}^{100}C_1 (8) 1^{99} + {}^{100}C_2 (8^2) 1^{98} + \dots + {}^{100}C_{100} 8^{100}}{8}\right\}$
 $= \left\{\frac{1^{00}C_0 1^{100} + 8k}{8}\right\}$
 $= \left\{\frac{1+8k}{8}\right\} = \left\{\frac{1}{8} + k\right\} K \in I$
 $= \frac{1}{8}$

Q.15 Which of the following points lies on the locus of the foot of perpedicular drawn upon any tangent to the ellipse, $\frac{x^2}{4} + \frac{y^2}{2} = 1$ from any of its foci ?

(1) $(-1, \sqrt{3})$ (2) $(-2, \sqrt{3})$ (3) $(-1, \sqrt{2})$ (4) (1, 2)Sol. 1

Let foot of perpendicular is (h,k)

$$\frac{x^2}{4} + \frac{y^2}{2} = 1$$
 (Given)

$$a = 2, b = \sqrt{2}, e = \sqrt{1 - \frac{2}{4}} = \frac{1}{\sqrt{2}}$$

:. Focus $(ae, 0) = (\sqrt{2}, 0)$ Equation of tangent $y = mx + \sqrt{a^2m^2 + b^2}$

$$y = mx + \sqrt{4m^2 + 2}$$

6th September 2020 | (Shift-1), Maths

$$(x-1) \left[\cos(x-1) + \frac{\sin(x-1)}{\cos(x-1)} + \frac{\sin(x-1)}{\cos(x-1)} + \frac{\sin(x-1)}{(x-1)} + \frac{\sin(x-1)}{$$

on taking limit

$$=\frac{0}{1+1}=0$$

Sol

Q.17 If $\sum_{i=1}^{n} (x_i - a) = n$ and $\sum_{i=1}^{n} (x_i - a)^2 = na$, (n, a > 1) then the standard deviation of n observations $x_1, x_2, ..., x_n$ is : (1) n $\sqrt{a-1}$ (2) $\sqrt{na-1}$ (3) a - 1 (4) $\sqrt{a - 1}$ Sol. S.D. = $\sqrt{\frac{\Sigma(x_i - a)^2}{n} - \left(\frac{\Sigma(x_i - a)}{n}\right)^2}$ $=\sqrt{\left(\frac{na}{n}\right)}-\left(\frac{n}{n}\right)^2}=\sqrt{a-1}$ **Q.18** If α and β be two roots of the equation $x^2 - 64x + 256 = 0$. Then the value of $\left(\frac{\alpha^3}{\beta^5}\right)^{1/8} + \left(\frac{\beta^3}{\alpha^5}\right)^{1/8}$ is : (1) 1 **3** (2)3(3) 2 (4)4Sol. $x^2 - 64 x + 256 = 0$ $\alpha + \beta = 64$ $\alpha\beta = 256$ $\left(\frac{\alpha^3}{\beta^5}\right)^{1/8} + \left(\frac{\beta^3}{\alpha^5}\right)^{1/8}$ $=\frac{\alpha+\beta}{(\alpha\beta)^{5/8}}=\frac{64}{(256)^{5/8}}=\frac{64}{32}=2$ **Q.19** The position of a moving car at time t is given by $f(t) = at^2 + bt + c$, t > 0, where a, b and c are real numbers greater than 1. Then the average speed of the car over the time interval $[t_1, t_2]$ is attained at the point : (1) $(t_1 + t_2)/2$ (2) $2a(t_1 + t_2) + b$ (3) $(t_2 - t_1)/2$ (4) $a(t_2 - t_1) + b$ **1** Sol. $f'(t) = V_{av} = \frac{f(t_2) - f(t_1)}{t_2 - t_1}$ $= \frac{a(t_2^2 - t_1^2) + b(t_2 - t_1)}{t_2 - t_1}$ $= a(t_1 + t_2) + b = 2at + b$ $t = \frac{t_1 + t_2}{2}$ **Q.20** If $I_1 = \int_0^1 (1 - x^{50})^{100} dx$ and $I_2 = \int_0^1 (1 - x^{50})^{101} dx$ such that $I_2 = \alpha I_1$ then α equals to : (1) $\frac{5050}{5049}$ (2) $\frac{5050}{5051}$ (3) $\frac{5051}{5050}$ (4) $\frac{5049}{5050}$ 6th September 2020 | (Shift-1), Maths Page | 120

Sol. 2

$$I_{1} = \int_{0}^{1} (1 - x^{50})^{100} dx$$

$$I_{2} = \int_{0}^{1} (1 - x^{50})(1 - x^{50})^{100} dx$$

$$= \int_{0}^{1} (1 - x^{50})^{100} dx - \int_{0}^{1} x^{50}(1 - x^{50})^{100} dx$$

$$I_{2} = I_{1} - \int_{0}^{1} \frac{x}{1} \cdot \frac{x^{49}(1 - x^{50})^{100}}{\pi} dx$$
By using by parts
$$1 - x^{50} = t$$

$$\Rightarrow x^{49} dx = \frac{-dt}{50}$$

$$I_{2} = I_{1} - \left[x \left(\frac{-1}{50} \right) \frac{(1 - x^{50})^{101}}{101} \right]_{0}^{1} + \int_{0}^{1} \left(\frac{-1}{50} \right) \frac{(1 - x^{50})^{101}}{101} dx$$

$$I_{2} = I_{1} - 0 + \frac{\int_{0}^{1} (1 - x^{50})^{101}}{(-5050)} dx$$

$$I_{2} = I_{1} - \frac{I_{2}}{5050}$$

$$\frac{5051}{5050} I_{2} = I_{1}$$

$$I_{2} = \frac{5050}{5051} I_{1}$$

$$\alpha = \frac{5050}{5051}$$

Q.21 If \vec{a} and \vec{b} are unit vectors, then the greatest value of $\sqrt{3} |\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|$ is_____. **Sol.** 4

$$\sqrt{3} |\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|$$

$$= \sqrt{3}(\sqrt{2 + 2\cos\theta}) + \sqrt{2 - 2\cos\theta}$$

$$= \sqrt{6}(\sqrt{1 + \cos\theta}) + \sqrt{2}(\sqrt{1 - \cos\theta})$$

$$\sqrt{6}\left(\sqrt{1 + 2\cos^2\frac{\theta}{2} - 1}\right) + \sqrt{2}\left(\sqrt{1 - 1 + 2\sin^2\frac{\theta}{2}}\right)$$

$$\sqrt{6}\left(\sqrt{2\cos^2\frac{\theta}{2}}\right) + \sqrt{2}\left(\sqrt{2\sin^2\frac{\theta}{2}}\right)$$

$$\{\text{greatest value of trigonometric function a } \cos\theta + b \sin\theta \le \sqrt{a^2 + b^2} \}$$

$$= 2\sqrt{3} \left|\cos\frac{\theta}{2}\right| + 2\left|\sin\frac{\theta}{2}\right| \le \sqrt{(2\sqrt{3})^2 + (2)^2} = 4$$

6th September 2020 | (Shift-1), Maths

Page | 121

Page | 123

$$f''(\mathbf{x}) = \begin{cases} 20x^{3}\sin\left(\frac{1}{x}\right) - 5x^{2}\cos\left(\frac{1}{x}\right) - 3x^{2}\cos\left(\frac{1}{x}\right) - x\sin\left(\frac{1}{x}\right) + 10, \ \mathbf{x} < 0\\ 0, \ \mathbf{x} = 0\\ 20x^{3}\cos\left(\frac{1}{x}\right) + 5x^{2}\sin\left(\frac{1}{x}\right) + 3x^{2}\sin\left(\frac{1}{x}\right) - x\cos\left(\frac{1}{x}\right) + 2\lambda, \ \mathbf{x} > 0 \end{cases}$$

if f" (0) exists then f" (0⁺) = f"(0⁻) $2\lambda = 10 \Rightarrow \lambda = 5$

Q.24 The angle of elevation of the top of a hill from a point on the horizontal plane passing through the foot of the hill is found to be 45°. After walking a distance of 80 meters towards the top, up a slope inclined at an angle of 30° to the horizontal plane, the angle of elevation of the top of the hill becomes 75°. Then the height of the hill (in meters) is

h = 80

- **Q.25** Set A has m elements and set B has n elements. If the total number of subsets of A is 112 more than the total number of subsets of B, then the value of m.n is _____.
- Sol. 28

A & B are two sets having m, n element respectively No. of subsets of A = 2^m No. of subsets of B = 2^n $2^m = 2^n + 112$ $2^m - 2^n = 112$ $2^n (2^{m-n}-1) = 112$ $2^n (2^{m-n}-1) = 2^4 (2^3-1)$ n = 4 m -n = 3 m -4 = 3 \Rightarrow m = 7 m. n = 28