JEE Main 2020 Paper

Date : $6^{\text {th }}$ September 2020
Time : 02:00 pm- $05: 00 \mathrm{pm}$
Subject : Maths
Q. 1 If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity e of the ellipse satisfies:
(1) $e^{4}+2 e^{2}-1=0$
(2) $e^{2}+2 e-1=0$
(3) $e^{4}+e^{2}-1=0$
(4) $e^{2}+e-1=0$

Sol. (3)

Equation of normal at $\left(a e, \frac{b^{2}}{a}\right)$
$\frac{a^{2} x}{a e}-\frac{b^{2} y}{\frac{b^{2}}{a}}=a^{2} e^{2}$
$\frac{a x}{e}-a y=a^{2} e^{2} \Rightarrow \frac{x}{e}-y=a e^{2}$
It passes through ($0,-\mathrm{b}$)
$-\mathrm{b}=\mathrm{ae}^{2} \Rightarrow \mathrm{~b}^{2}=\mathrm{a}^{2} \mathrm{e}^{4}$
$a^{2}\left(1-e^{2}\right)=a^{2} e^{4}$
$\Rightarrow \mathrm{e}^{4}+\mathrm{e}^{2}-1=0$
Q. 2 The set of all real values of λ for which the function $f(x)=\left(1-\cos ^{2} x\right) \cdot(\lambda+\sin x)$, $\mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, has exactly one maxima and exactly one minima, is:
(1) $\left(-\frac{3}{2}, \frac{3}{2}\right)-\{0\}$
(2) $\left(-\frac{1}{2}, \frac{1}{2}\right)-\{0\}$
(3) $\left(-\frac{3}{2}, \frac{3}{2}\right)$
(4) $\left(-\frac{1}{2}, \frac{1}{2}\right)$

JEE Main 2020 Paper

Sol. (1)
$f(x)=\left(1-\cos ^{2} x\right)(\lambda+\sin x)$
$f(x)=\sin ^{2} x(\lambda+\sin x)$
$\mathrm{f}^{\prime}(\mathrm{x})=2 \sin \mathrm{x} \cos \mathrm{x}(\lambda+\sin \mathrm{x})+\sin ^{2} \mathrm{x}(\cos \mathrm{x})$
$=\sin 2 x\left(\lambda+\sin x+\frac{\sin x}{2}\right)$
$=\sin 2 x(2 \lambda+3 \sin x)$
For extreme value $\mathrm{f}^{\prime}(\mathrm{x})=0$
$\sin 2 x=0 \Rightarrow \sin x=0 \Rightarrow x=0 \rightarrow$ One point
$2 \lambda+3 \sin x=0$
$\Rightarrow \sin x=\frac{-2 \lambda}{3}$
$\sin x \in(-1,1)-\{0\}$
$-1<\frac{-2 \lambda}{3}<1 \Rightarrow \frac{-3}{2}<\lambda<\frac{3}{2}$
$\lambda \in\left(\frac{-3}{2}, \frac{3}{2}\right)-\{0\}$
Q. 3 The probabilities of three events A, B and C are given by $P(A)=0.6, P(B)=0.4$ and $P(C)=0.5$. If $P(A \cup B)=0.8, P(A \cap C)=0.3, P(A \cap B \cap C)=0.2, P(B \cap C)=\beta$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=\alpha$, where $0.85 \leq \alpha \leq 0.95$, then β lies in the interval:
(1) $[0.36,0.40]$
(2) $[0.25,0.35]$
(3) $[0.35,0.36]$
(4) $[0.20,0.25]$

Sol.

(2)
$P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(C \cap A)+P(A \cap B \cap C)$
$\alpha=0.6+0.4+0.5-P(A \cap B)-\beta-0.3+0.2$
$\alpha=1.4-\mathrm{P}(\mathrm{A} \cap \mathrm{B})-\beta \Rightarrow \alpha+\beta=1.4-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
again
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$0.8=0.6+0.4-P(A \cap B)$
$P(A \cap B)=0.2$
Put the value $P(A \cap B)$ in equation (1)
$\alpha+\beta=1.2$
$\alpha=1.2-\beta$
$0.85 \leq \alpha \leq 0.95 \Rightarrow 0.85 \leq 1.2-\beta \leq 0.95$
$\beta \in[0.25,0.35]$

JEE Main 2020 Paper

Q. 4 The common difference of the A.P. $b_{1}, b_{2}, \ldots . b_{m}$ is 2 more than the common difference of A.P. $a_{1}, a_{2}, \ldots a_{n}$. If $a_{40}=-159, a_{100}=-399$ and $b_{100}=a_{70}$, then b_{1} is equal to:
(1) -127
(2) 81
(3) 127
(4) -81

Sol. (4)

$$
\begin{align*}
& A . P\left(a_{1}, a_{2}, a_{3} \ldots \ldots \ldots . a_{n}\right)\left(C D=D_{a}\right) \\
& \left(b_{1}, b_{2}, b_{3} \ldots \ldots \ldots . b_{m}\right)\left(C D=D_{b}\right) \\
& D_{b}=D_{a}+2 \\
& a_{40}=-159 \\
& a_{1}+39 D_{a}=-159---(1) \\
& a_{100}=-399 \tag{2}\\
& a_{1}+99 D_{a}=-399----(2) \\
& E_{q}(1)-(2) \\
& -60 D_{a}=240 \Rightarrow D_{a}=-4 \\
& D_{b}=-4+2=-2 \\
& a_{1}+39(-4)=-159 \Rightarrow a_{1}=-3 \\
& b_{100}=a_{70} \\
& b_{1}+99 D_{b}=a_{1}+69 D_{a} \\
& b_{1}+99(-2)=(-3)+69(-4) \\
& b_{1}=-81
\end{align*}
$$

Q. 5 The integral $\int_{1}^{2} e^{x} \cdot x^{x}\left(2+\log _{e} x\right) d x$ equal :
(1) $e(4 e-1)$
(2) $e(4 e+1)$
(3) $4 e^{2}-1$
(4) $e(2 e-1)$

Sol. (1)
$\int_{1}^{2} e^{x} \cdot x^{x} \quad(2+\ln x) d x$
$\mathrm{e}^{\mathrm{x}} . \mathrm{x}^{\mathrm{x}}=\mathrm{t} \quad \because$ Upper Limt $=\mathrm{e}^{2} \cdot 2^{2}$, Lower Limit $=\mathrm{e}$
$\left(e^{x} \cdot x^{x}+e^{x} x^{x}(1+\ln x)\right) d x=d t$
$e^{x} \cdot x^{x}(2+\ln x) d x=d t$
$\int_{e}^{4 . e^{2}} d t=[\mathrm{t}]_{e}^{4 . e^{2}}=4 . \mathrm{e}^{2}-\mathrm{e}=\mathrm{e}(4 \mathrm{e}-1)$
Q. 6 If the tangent to the curve, $y=f(x)=x \log _{e} x,(x>0)$ at a point $(c, f(c))$ is parallel to the line-segment joining the points $(1,0)$ and (e, e), then c is equal to:
(1) $\mathrm{e}^{\left(\frac{1}{1-\mathrm{e}}\right)}$
(2) $\frac{e-1}{e}$
(3) $\frac{1}{e-1}$
(4) $\mathrm{e}^{\left(\frac{1}{\mathrm{e}-1}\right)}$

Sol. (4)
$y=f(x)=x \ln x$
$\mathrm{m}_{1}=\left.\frac{d y}{d x}\right|_{(c, f(\mathrm{c}))}=\left.(\ln \mathrm{x}+1)\right|_{(c, f(\mathrm{c}))}=\operatorname{Inc}+1$
slope of the line joining $(1,0),(e, e)$
$m_{2}=\left(\frac{e}{e-1}\right)$
$m_{2}=m_{1} \Rightarrow \operatorname{Inc}+1=\frac{e}{e-1}$
$\operatorname{Inc}=\frac{e}{e-1}-1=\frac{1}{e-1}$
$C=e^{\left(\frac{1}{\mathrm{e}-1}\right)}$

JEE Main 2020 Paper

Q. 7 If $y=\left(\frac{2}{\pi} x-1\right) \operatorname{cosec} x$ is the solution of the differential equation, $\frac{d y}{d x}+p(x) y=\frac{2}{\pi} \operatorname{cosec} x, 0<x<\frac{\pi}{2}$, then the function $p(x)$ is equal to:
(1) $\operatorname{cosec} x$
(2) $\cot x$
(3) $\tan x$
(4) $\sec x$

Sol. 2
$y=\left(\frac{2}{\pi} x-1\right) \operatorname{cosec} x$
Differentiate w.r.t. x
$\frac{d y}{d x}=\frac{2}{\pi} \operatorname{cosec} \mathrm{x}-\left(\frac{2 x}{\pi}-1\right) \operatorname{cosec} \mathrm{x} \cdot \cot \mathrm{x}$
$\frac{d y}{d x}+\left(\frac{2 x}{\pi}-1\right) \operatorname{cosec} \mathrm{x} \cdot \cot \mathrm{x}=\frac{2}{\pi} \operatorname{cosec} \mathrm{x}$
$\frac{d y}{d x}+y \cot x=\frac{2}{\pi} \operatorname{cosec} \mathrm{x}$
Compare this differential equation with given differential equation $p(x)=\cot x$
Q. 8 If α and β are the roots of the equation $2 x(2 x+1)=1$, then β is equal to:
(1) $2 \alpha(\alpha-1)$
(2) $-2 \alpha(\alpha+1)$
(3) $2 \alpha^{2}$
(4) $2 \alpha(\alpha+1)$

Sol. (2)
$2 x(2 x+1)=1$
If $\alpha \& \beta$ are the roots i.e $\alpha \& \beta$ satisy this equation
$2 \alpha(2 \alpha+1)=1 \quad \Rightarrow \quad \alpha(2 \alpha+1)=\frac{1}{2}$
$4 x^{2}+2 x-1=0$
$\alpha+\beta=\frac{-1}{2}=-\alpha(2 \alpha+1)$
$\beta=-\alpha(2 \alpha+1)-\alpha=-\alpha(2 \alpha+2)=-2 \alpha(\alpha+1)$
Q. 9 For all twice differentiable functions $f: R \rightarrow R$, with $f(0)=f(1)=f^{\prime}(0)=0$,
(1) $f^{\prime \prime}(x)=0$, at every point $x \in(0,1)$
(2) $f^{\prime \prime}(x) \neq 0$, at every point $x \in(0,1)$
(3) $f^{\prime \prime}(x)=0$, for some $x \in(0,1)$
(4) $f^{\prime \prime}(0)=0$

Sol. (3)
Applying rolle's theorem in $[0,1]$ for function $f(x)$
$f^{\prime}(c)=0, c \in(0,1)$
again applying rolles theorem in [0,c] for function $f^{\prime}(x) s$
$\mathrm{f}^{\prime \prime}\left(\mathrm{c}_{1}\right)=0, \mathrm{c}_{1} \in(0, \mathrm{c})$

JEE Main 2020 Paper

Q. 10 The area (in sq.units) of the region enclosed by the curves $y=x^{2}-1$ and $y=1-x^{2}$ is equal to :
(1) $\frac{4}{3}$
(2) $\frac{7}{2}$
(3) $\frac{16}{3}$
(4) $\frac{8}{3}$

Sol. (4)

Total area $=4 \int_{0}^{1}\left(1-x^{2}\right) d x=4\left[x-\frac{x^{3}}{3}\right]_{0}^{1}$
$=4\left[1-\frac{1}{3}\right]=\frac{8}{3}$ sq.unit
Q. 11 For a suitably chosen real constant a, let a function, $f: R-\{-a\} \rightarrow R$ be defined by $f(x)=\frac{a-x}{a+x}$. Further suppose that for any real number $x \neq-a$ and $f(x) \neq-a$, $($ fof $)(x)=x$. Then $f\left(-\frac{1}{2}\right)$ is equal to:
(1) -3
(2) 3
(3) $\frac{1}{3}$
(4) $-\frac{1}{3}$

Sol. (2)
$\mathrm{f}(\mathrm{x})=\frac{a-x}{a+x}$
$\mathrm{f}(\mathrm{f}(\mathrm{x}))=\frac{a-f(x)}{a+f(x)}=x$
$\frac{a-a x}{1+x}=f(x)=\frac{a-x}{a+x}$
$a\left(\frac{1-x}{1+x}\right)=\frac{a-x}{a+x}$
$\Rightarrow a=1$
So $f(x)=\frac{1-x}{1+x}$
$f\left(\frac{-1}{2}\right)=3$

JEE Main 2020 Paper

Q. 12 Let $\theta=\frac{\pi}{5}$ and $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$. If $B=A+A^{4}$, then $\operatorname{det}(B)$:
(1) is one
(2) lies in $(1,2)$
(3) lies in $(2,3)$
(4) is zero

Sol. (2)
$A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$B=A+A^{4}$
$A^{2}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$=\left[\begin{array}{cc}\cos ^{2} \theta-\sin ^{2} \theta & 2 \sin \theta \cos \theta \\ -2 \sin \theta \cos \theta & -\sin ^{2} \theta+\cos ^{2} \theta\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]$
Simmilarly
$A^{4}=\left[\begin{array}{cc}\cos 4 \theta & \sin 4 \theta \\ -\sin 4 \theta & \cos 4 \theta\end{array}\right]$
$B=A^{4}+A=\left[\begin{array}{cc}\cos 4 \theta & \sin 4 \theta \\ -\sin 4 \theta & \cos 4 \theta\end{array}\right]+\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$B=A^{4}+A=\left[\begin{array}{cc}\cos 4 \theta+\cos \theta & \sin 4 \theta+\sin \theta \\ -\sin 4 \theta-\sin \theta & \cos 4 \theta+\cos \theta\end{array}\right]$
$B=(\cos 4 \theta+\cos \theta)^{2}+(\sin 4 \theta+\sin \theta)^{2}$
$=\cos ^{2} 4 \theta+\cos ^{2} \theta+2 \cos 4 \theta \cos \theta$
$+\sin ^{2} 4 \theta+\sin ^{2} \theta+2 \sin 4 \theta-\sin \theta$
$=2+2(\cos 4 \theta \cos \theta+\sin 4 \theta \sin \theta)$
$=2+2 \cos 3 \theta$
at $\theta=\frac{\pi}{5}$
$|B|=2+2 \cos \frac{3 \pi}{5}=2-(1-\sin 18)$
$|B|=2\left(1-\frac{\sqrt{5}-1}{4}\right)=2\left(\frac{5-\sqrt{5}}{4}\right)=\frac{5-\sqrt{5}}{2}$
Q. 13 The centre of the circle passing through the point $(0,1)$ and touching the parabola $y=x^{2}$ at the point $(2,4)$ is :
(1) $\left(\frac{3}{10}, \frac{16}{5}\right)$
(2) $\left(\frac{6}{5}, \frac{53}{10}\right)$
(3) $\left(\frac{-16}{5}, \frac{53}{10}\right)$
(4) $\left(\frac{-53}{10}, \frac{16}{5}\right)$

JEE Main 2020 Paper

Sol. (3)

Circle passing through point $(0,1)$ and touching curve $y=x^{2}$ at $(2,4)$
tangent at $(2,4)$ is
$\frac{(y+4)}{2}=x(2)$
$\Rightarrow y-4 x+4=0$
Equation of circle
$(x-2)^{2}+(y-4)^{2}+\lambda(4 x-y-4)=0$
Passing through $(0,1)$
$4+9+\lambda(-5)=0$
$\lambda=\frac{13}{5}$
Circle is
$x^{2}-4 x+4+y^{2}-8 y+16+\frac{13}{5}[4 x-y-4]=0$
$x^{2}+y^{2}+\left(\frac{52}{5}-4\right) x-\left(8+\frac{13}{5}\right) y+20-\frac{52}{5}=0$
$x^{2}+y^{2}+\frac{32}{5} x-\frac{53}{5} y+\frac{48}{5}=0$
Centre is $\left(-\frac{16}{5}, \frac{53}{10}\right)$
Q. 14 A plane P meets the coordinate axes at A, B and C respectively. The centroid of $\triangle A B C$ is given to be $(1,1,2)$. Then the equation of the line through this centroid and perpendicular to the plane P is:
(1) $\frac{x-1}{2}=\frac{y-1}{1}=\frac{z-2}{1}$
(2) $\frac{x-1}{2}=\frac{y-1}{2}=\frac{z-2}{1}$
(3) $\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$
(4) $\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-2}{2}$

Sol. (2)

JEE Main 2020 Paper

$G=\left(\frac{\alpha}{3}, \frac{\beta}{3}, \frac{\gamma}{3}\right)=(1,1,2)$
$\alpha=3, \beta=3, \gamma=6$
Equation of plane is
$\frac{\mathrm{x}}{\alpha}+\frac{\mathrm{y}}{\beta}+\frac{\mathrm{z}}{\gamma}=1$
$\frac{x}{3}+\frac{y}{3}+\frac{z}{6}=1$
$2 x+2 y+z=6$
Required line perpendicular to plane is $\frac{x-1}{2}=\frac{y-1}{2}=\frac{z-2}{1}$
Q. 15 Let $f: R \rightarrow R$ be a function defined by $f(x)=\max \left\{x, x^{2}\right\}$. Let S denote the set of all points in R, where f is not differentiable. Then
(1) $\{0,1\}$
(2) ϕ (an empty set)
(3) $\{1\}$
(4) $\{0\}$

Sol. (1)

Function is not differentiable at two point
$\{0,1\}$
Q. 16 The angle of elevation of the summit of a mountain from a point on the ground is 45°. After climbing up one km towards the summit at an inclination of 30° from the ground, the angle of elevation of the summit is found to be 60°. Then the height (in km) of the summit from the ground is:
(1) $\frac{1}{\sqrt{3}+1}$
(2) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$
(3) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
(4) $\frac{1}{\sqrt{3}-1}$

Sol. (4)

JEE Main 2020 Paper

If Δ CDF
$\operatorname{Sin} 30^{\circ}=\frac{z}{1} \Rightarrow z=\frac{1}{2} \mathrm{~km}$
$\cos 30^{\circ}=\frac{\mathrm{y}}{1} \Rightarrow \mathrm{y}=\frac{\sqrt{3}}{2} \mathrm{~km}$
Now in $\triangle A B C$
$\tan 45^{\circ}=\frac{\mathrm{h}}{\mathrm{x}+\mathrm{y}} \Rightarrow \mathrm{h}=\mathrm{x}+\mathrm{y}$
$\mathrm{x}=\mathrm{h}-\frac{\sqrt{3}}{2}$
Now in $\triangle \mathrm{BDE}$
$\tan 60^{\circ}=\frac{\mathrm{h}-\mathrm{z}}{\mathrm{x}}$
$\sqrt{3} \mathrm{x}=\mathrm{h}-\frac{1}{2}$
$\sqrt{3}\left(\mathrm{~h}-\frac{\sqrt{3}}{2}\right)=\mathrm{h}-\frac{1}{2} \Rightarrow \mathrm{~h}=\frac{1}{\sqrt{3}-1} \mathrm{~km}$
Q. 17 If the constant term in the binomial expansion of $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$ is 405 , then $|k|$ equals:
(1) 1
(2) 9
(3) 2
(4) 3

Sol. (4)
${ }^{10} C_{r}\left(\frac{-k}{x^{2}}\right)^{r}(\sqrt{x})^{10-r}$
${ }^{10} C_{r}(-k)^{r}(x)^{5-\frac{5 r}{2}}$
For constant term
$5-\frac{5 r}{2}=0 \Rightarrow r=2$
$\mathrm{T}_{3}={ }^{10} \mathrm{C}_{2} \mathrm{k}^{2}=405$
$\mathrm{k}^{2}=\frac{405}{45}=\frac{81}{9}=9$
$|k|=3$
Q. 18 Let $z=x+i y$ be a non-zero complex number such that $z^{2}=i|z|^{2}$, where $i=\sqrt{-1}$, then z lies on the
(1) line, $y=x$
(2) real axis
(3) imaginary axis
(4) line, $y=-x$

JEE Main 2020 Paper

Sol. (1)
$z=x+i y$
$z^{2}=i|z|^{2}$
$x^{2}-y^{2}+2 i x y=i\left(x^{2}+y^{2}\right)$
equating real terms
$x^{2}-y^{2}=0 \Rightarrow x^{2}=y^{2}$
equating imaginary terms
$2 x y=x^{2}+y^{2}$
$(x-y)^{2}=0 \Rightarrow x=y$
Q. 19 Let L denote the line in the $x y$-plane with x and y intercepts as 3 and 1 respectively. Then the image of the point $(-1,-4)$ in this line is:
(1) $\left(\frac{11}{5}, \frac{28}{5}\right)$
(2) $\left(\frac{8}{5}, \frac{29}{5}\right)$
(3) $\left(\frac{29}{5}, \frac{11}{5}\right)$
(4) $\left(\frac{29}{5}, \frac{8}{5}\right)$

Sol. (1)
Let (h, k) is the image of the point $(-1,-4)$ in the line
$\frac{x}{3}+\frac{y}{1}=1$
$x+3 y=3$
$L_{2}: 3 x-y+\lambda=0$
$-3+4+\lambda=0$
$\lambda=-1$
$3 x-y=1$
(h, k) satisfy the equation of line L_{2}
$3 h-k=1$ \qquad
$\left|\frac{-1-12-3}{\sqrt{1+9}}\right|=\left|\frac{h+3 k-3}{\sqrt{1+9}}\right|$

$16=|h+3 k-3|$
$h+3 k=19$
$h+3 k=-13$
From equation (2) \& (3) put the value of h in equation (1)
$h=19-3 k$, $\quad h=-13-3 k$
$3(19-3 k)-k=1 \quad 3(-13-3 k)-k=1$
$-10 k=-56=\frac{28}{5} \quad-10 k=40 \Rightarrow k=-4$
$\mathrm{k}=\frac{28}{5}, \mathrm{~h}=19-3\left(\frac{28}{5}\right)=\frac{95-84}{5}=\frac{11}{5}$
Image $=\left(\frac{11}{5}, \frac{28}{5}\right)$
Q. 20 Consider the statement : "For an integer n, if $\mathrm{n}^{3}-1$ is even, then n is odd." The contrapositive statement of this statement is:
(1) For an integer n, if n is even, then $n^{3}-1$ is even
(2) For an integer n, if n is odd, then $n^{3}-1$ is even
(3) For an integer n, if $n^{3}-1$ is not even, then n is not odd.
(4) For an integer n, if n is even, then $n^{3}-1$ is odd

Sol. (4)

$\mathrm{P}: \mathrm{n}^{3}-1$ is even, $\mathrm{q}: \mathrm{n}$ is odd
Contrapositive of $\mathrm{p} \rightarrow \mathrm{q}=\sim \mathrm{q} \rightarrow \sim \mathrm{p}$
\Rightarrow If n is not odd then $n^{3}-1$ is not even
\Rightarrow For an integer n, if n is even, then $n^{3}-1$ is odd

JEE Main 2020 Paper

Q. 21 The number of words (with or without meaning) that can be formed from all the letters of the word "LETTER" in which vowels never come together is \qquad
Sol. 120
Consonants \rightarrow LTTR
Vowels \rightarrow BE
Total No of words $=\frac{6!}{2!2!}=180 \quad$ (T and E are repeated)
Total no of words if vowels are together
$=\frac{5!}{2!}=60 \quad(E$ is repeated $)$
Required $=180-60=120$
Q. 22 If \vec{x} and \vec{y} be two non-zero vectors such that $|\vec{x}+\vec{y}|=|\vec{x}|$ and $2 \vec{x}+\lambda \vec{y}$ is perpendicular to \vec{y}, then the value of λ is \qquad
Sol. 1
$|\bar{x}+\bar{y}|^{2}=|\bar{x}|^{2}$
$\Rightarrow|\bar{y}|^{2}+2 \bar{x} \cdot \bar{y}=0$ \qquad
and $(2 \bar{x}+\lambda \bar{y}) \cdot \bar{y}=0$
$\Rightarrow \lambda\left(|\bar{y}|^{2}\right)+2 \bar{x} \cdot \bar{y}=0$ \qquad
by comparing (1) \& (2) we get $\lambda=1$
Q. 23 Consider the data on x taking the values $0,2,4,8, \ldots . .2^{n}$ with frequencies ${ }^{\mathrm{n}} \mathrm{C}_{0},{ }^{\mathrm{n}} \mathrm{C}_{1},{ }^{\mathrm{n}} \mathrm{C}_{2}, \ldots .{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$, respectively. If the mean of this data is $\frac{728}{2^{\mathrm{n}}}$, then n is equal to

Sol. 6
X_{i} (observation) $0 \quad 2 \quad 2^{2} \quad \ldots . .2^{n}$
f_{i} (frequency) $\quad{ }^{n} C_{0}{ }^{n} C_{1}$
${ }^{n} C_{2}$
$\cdots .{ }^{n} C_{n}$
$\bar{x}=\frac{\sum f_{i} X_{i}}{\sum f_{i}}$
$=\frac{0 \times{ }^{n} C_{0}+2^{n} c_{1}+2^{2}{ }^{n} c_{2}+\ldots \ldots+2^{n}{ }^{n} c_{n}}{{ }^{n} c_{0}+{ }^{n} c_{1}+\ldots .+{ }^{n} c_{n}}$
$=\frac{3^{n}-1}{2^{n}}=\frac{728}{2^{n}}$
$3^{n}=729=3^{6}$
$\mathrm{n}=6$

JEE Main 2020 Paper

Q. 24 Suppose that function $f: R \rightarrow R$ satisfies $f(x+y)=f(x) f(y)$ for all $x, y \in R$ and $f(1)=3$. If $\sum_{i=1}^{n} f(i)=363$, then n is equal to
Sol. 5
$f(x+y)=f(x) f(y)$
$f(x)=a^{x}$
$\Rightarrow f(1)=a=3$
So $f(x)=3^{x}$
$\sum_{i=1}^{n} f(i)=363$
$\Rightarrow 3+3^{2}+3^{3}+\ldots+3^{n}=363 \Rightarrow \frac{3\left(3^{n}-1\right)}{2}=363 \Rightarrow n=5$
Q. 25 The sum of distinct values of λ for which the system of equations
$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$
$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0$
$2 x+(3 \lambda+1) y+3(\lambda-1) z=0$,
has non-zero solutions, is \qquad
Sol. 3
$\left|\begin{array}{ccc}\lambda-1 & 3 \lambda+1 & 2 \lambda \\ \lambda-1 & 4 \lambda-2 & \lambda+3 \\ 2 & 3 \lambda+1 & 3(\lambda-1)\end{array}\right|=0$
$R_{2} \rightarrow R_{2}-R_{1}$
$R_{3} \rightarrow R_{3}-R_{1}$
$\left|\begin{array}{ccc}\lambda-1 & 3 \lambda+1 & 2 \lambda \\ 0 & \lambda-3 & -\lambda+3 \\ 3-\lambda & 0 & \lambda-3\end{array}\right|=0$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{3}$
$\left|\begin{array}{ccc}3 \lambda-1 & 3 \lambda+1 & 2 \lambda \\ -\lambda+3 & \lambda-3 & -\lambda+3 \\ 0 & 0 & \lambda-3\end{array}\right|=0$
$(\lambda-3)[(3 \lambda-1)(\lambda-3)-(3-\lambda)(3 \lambda+1)]=0$
$(\lambda-3)\left[3 \lambda^{2}-10 \lambda+3-\left(8 \lambda-3 \lambda^{2}+3\right)\right]=0$
$(\lambda-3)\left(6 \lambda^{2}-18 \lambda\right)=0$
(6λ) $(\lambda-3)^{2}=0$
$\lambda=0,3$
sum of values of $\lambda=0+3=3$

