

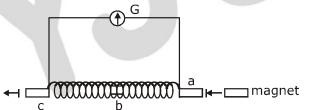
Q.4 On the x-axis and at a distance x from the origin, the gravitational field due a mass distribution is given by $\frac{Ax}{(x^2 + a^2)^{3/2}}$ in the x-direction. The magnitude of gravitational potential on the x-axis at a distance x, taking its value to be zero at infinity, is:

(1)
$$A(x^2 + a^2)^{3/2}$$
 (2) $\frac{A}{(x^2 + a^2)^{1/2}}$ (3) $A(x^2 + a^2)^{1/2}$ (4) $\frac{A}{(x^2 + a^2)^{3/2}}$

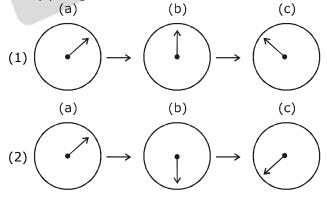
Sol. 2

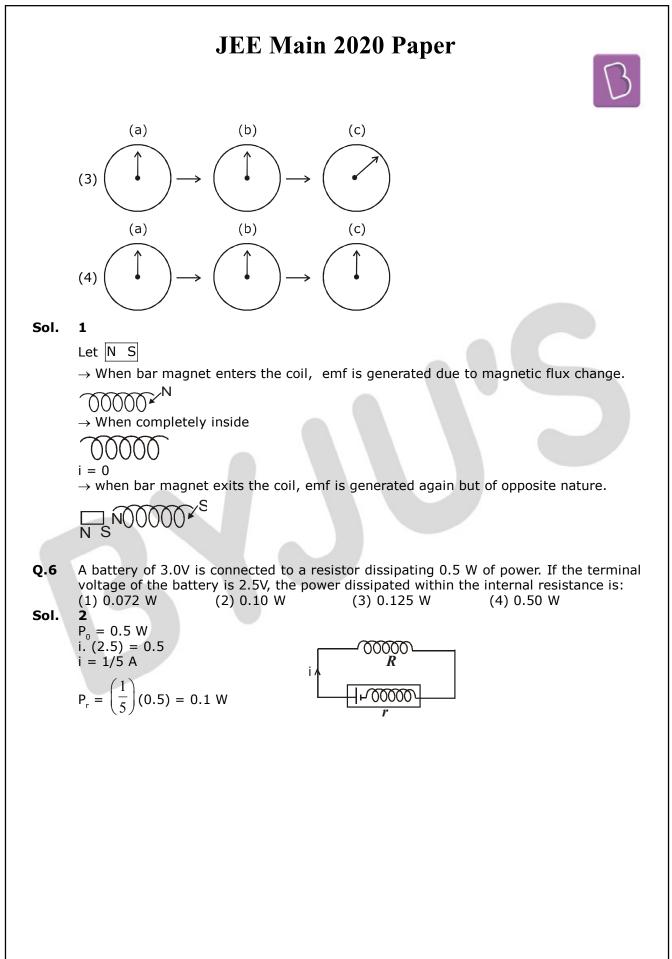
$$E_{x} = \frac{Ax}{(x^{2} + a^{2})^{3/2}}$$
$$\frac{-dV}{dx} = \frac{Ax}{(x^{2} + a^{2})^{3/2}}$$
$$\int_{0}^{V} dV = -\int_{\infty}^{x} \frac{Ax}{(x^{2} + a^{2})^{3/2}} dx$$
$$V = \frac{A}{(x^{2} + a^{2})^{1/2}}$$

Q.5 A small bar magnet is moved through a coil at constant speed from one end to the other. Which of the following series of observations will be seen on the galvanometer G attached across the coil?



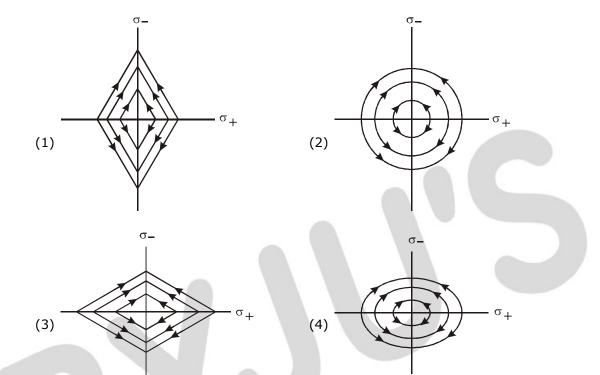
Three positions shown describe: (a) the magnet's entry (b) magnet is completely inside and (c) magnet's exit.



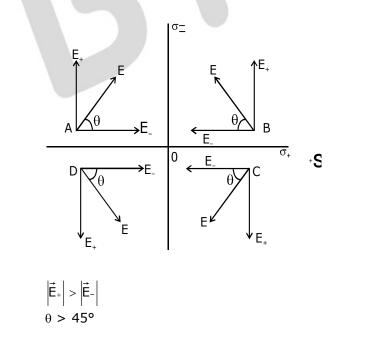


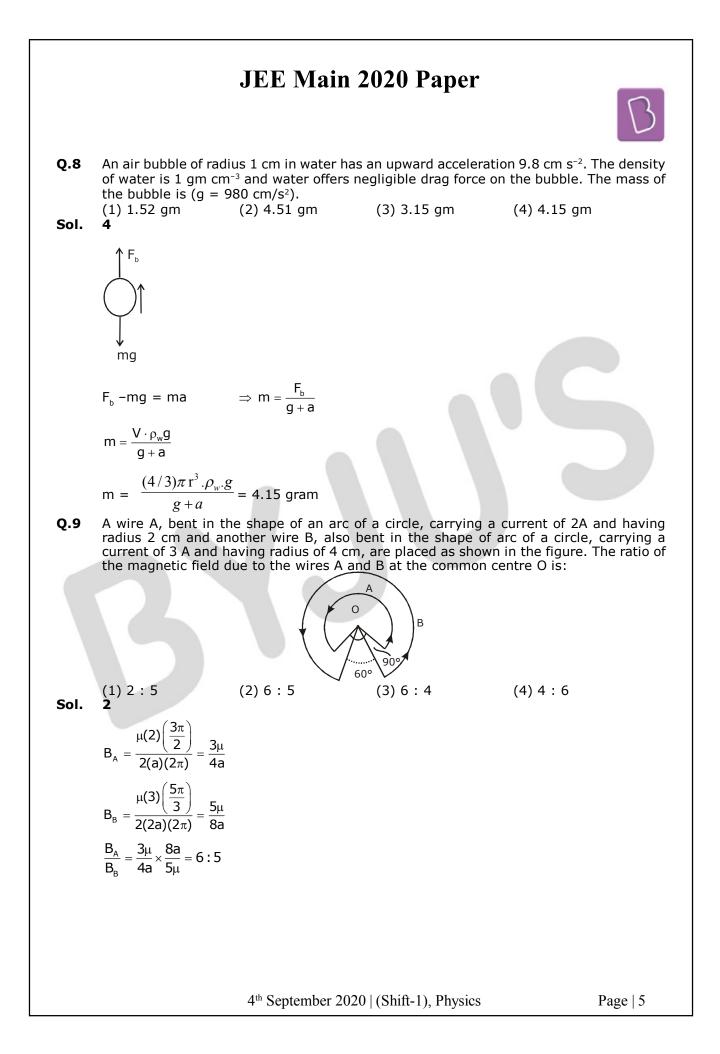
4th September 2020 | (Shift-1), Physics

Q.7 Two charged thin infinite plane sheets of uniform surface charge density σ_+ and σ_- , where $|\sigma_+| > |\sigma_-|$, intersect at right angle. Which of the following best represents the electric field lines for this system:



Let us choose points A,B,C,D as shown to understand the direction of net electric field to get a better picture.





Q.10 Particle A of mass $m_A = \frac{m}{2}$ moving along the x-axis with velocity v_0 collides elastically with another particle B at rest having mass $m_B = \frac{m}{3}$. If both particles move along the x-axis after the collision, the change $\Delta \lambda$ in de-Broglie wavlength of particle A, in terms of its de-Broglie wavelength (λ_0) before collision is:

(1) $\Delta \lambda = \frac{5}{2} \lambda_0$ (2) $\Delta \lambda = 2\lambda_0$ (3) $\Delta \lambda = 4\lambda_0$ (4) $\Delta \lambda = \frac{3}{2} \lambda_0$

Sol.

Speed of particle A after collision will be,

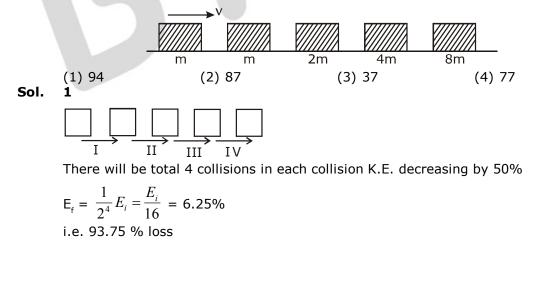
$$V_{1} = \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \cdot u_{1} + \frac{2m_{2}}{m_{1} + m_{2}} \cdot u_{2}$$
$$V_{1} = \frac{\frac{m}{2} - m/3}{\frac{m}{2} + m/3} V_{0} = V_{0}/5$$

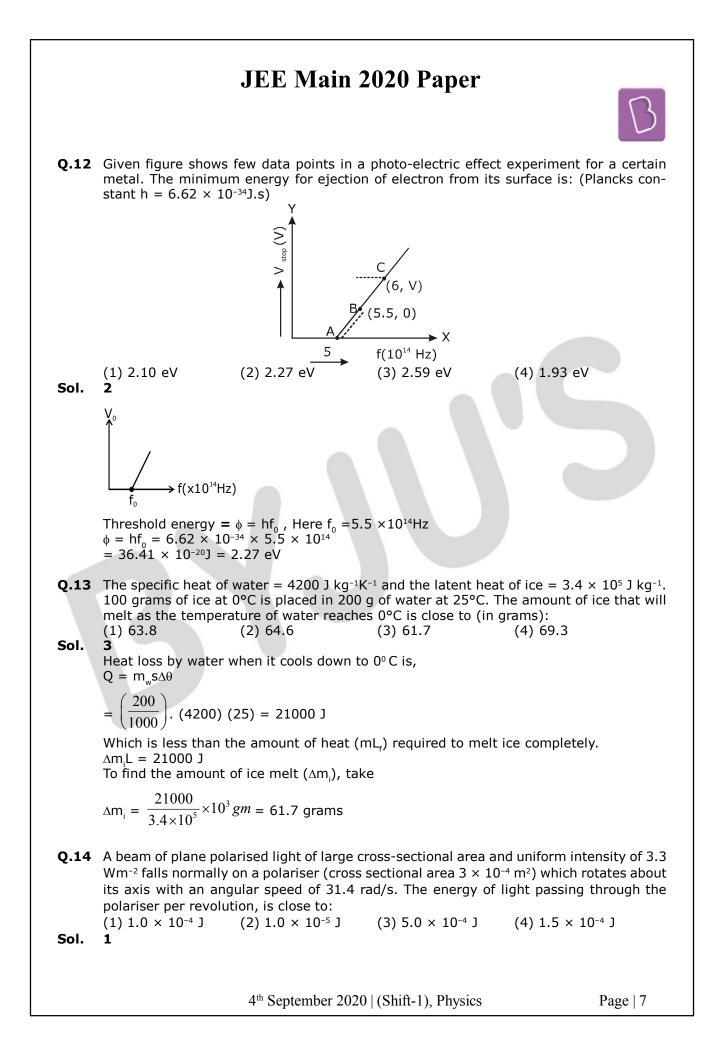
de-Broglie wave length of particle A after collision will be

$$\lambda' = \frac{h}{\frac{m}{2} \cdot \frac{V_0}{5}} = 5 \cdot \frac{h}{\frac{m}{2} \cdot V_0} = 5\lambda_0$$

 \Rightarrow change in wavelength $\Delta \lambda = 4\lambda_0$

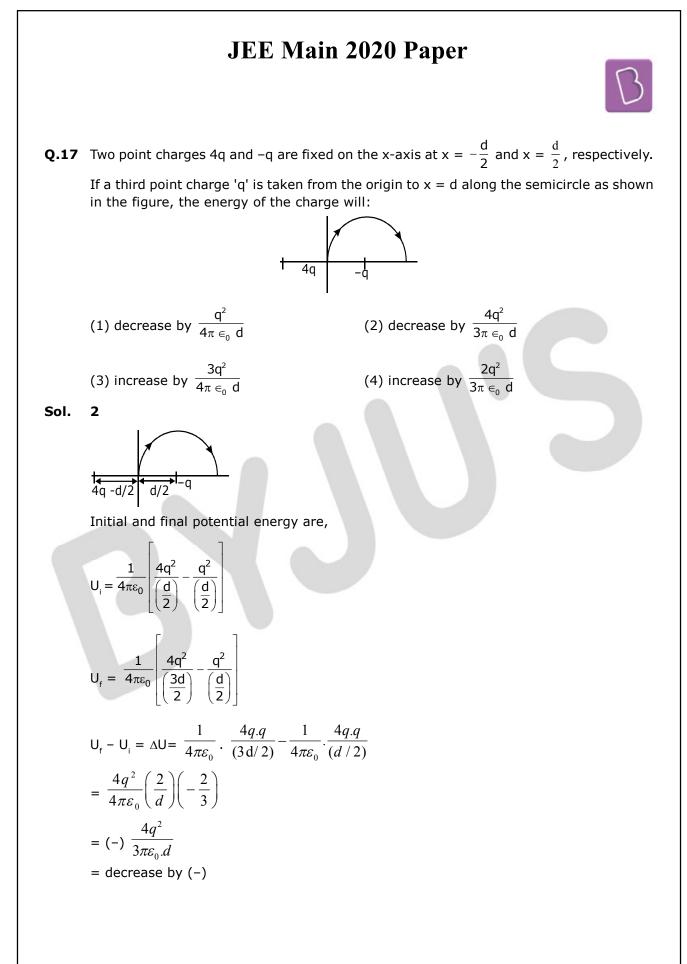
Q.11 Blocks of masses m, 2m, 4m and 8m are arranged in a line on a frictionless floor. Another block of mass m, moving with speed v along the same line (see figure) collides with mass m in perfectly inelastic manner. All the subsequent collisions are also perfectly inelastic. By the time the last block of mass 8m starts moving the total energy loss is p% of the original energy. Value of 'p' is close to:



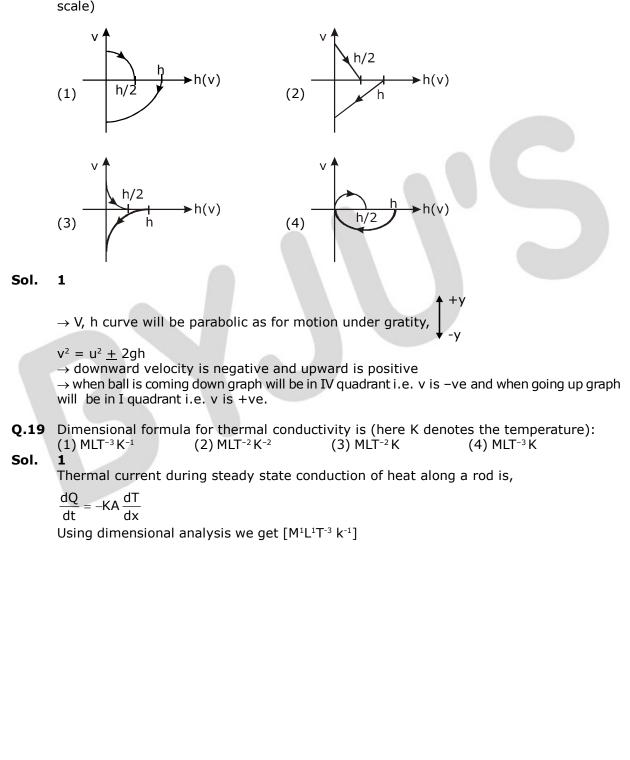


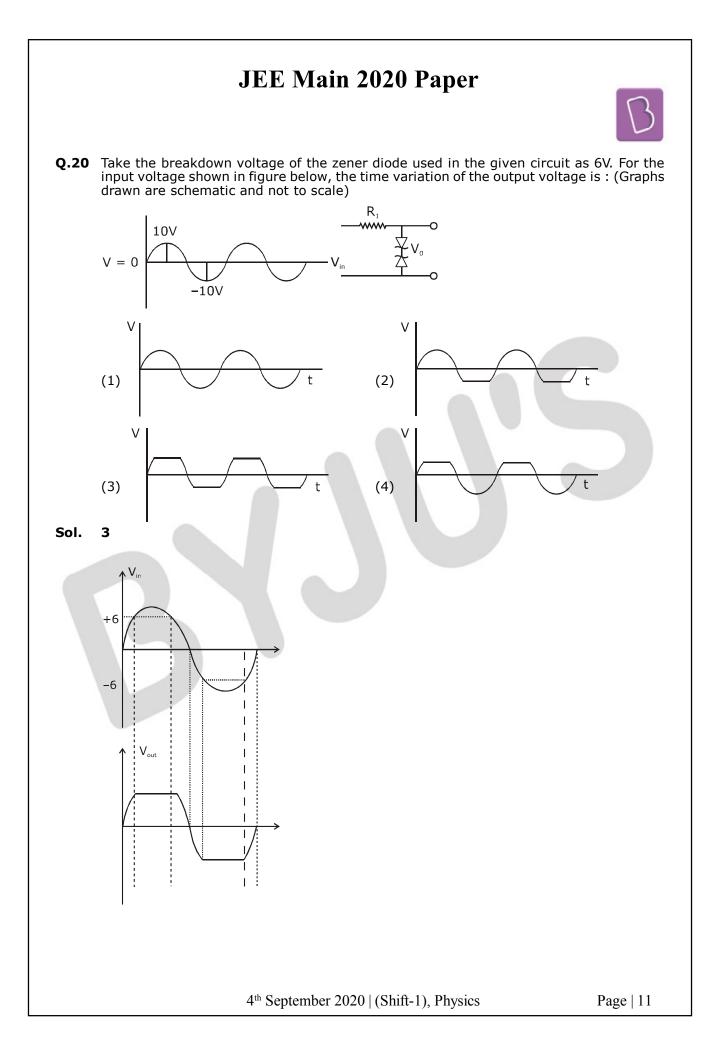
From Malus's law $p = p_0 \cos^2 \omega t$ here, p_0 and p are incident and transmitted intensity respectively. $E_{avg} = \langle p \rangle A \cdot T = \frac{p_0}{2} T A$ $\mathsf{E}_{\mathsf{avg}} = \langle \mathsf{P} \rangle. \ \mathsf{TA} = \frac{p_0}{2} \cdot \frac{2\pi}{\omega} \mathsf{A} = \frac{3.3 \times 3.14 \times 3 \times 10^{-4}}{31.4} = 9.9 \times 10^{-5} \approx 10 \times 10^{-5} \approx 1 \times 10^{-4} \, \mathsf{J}$ **Q.15** For a transverse wave travelling along a straight line, the distance between two peaks (crests) is 5m, while the distance between one crest and one trough is 1.5m. The possible wavelengths (in m) of the waves are: (1) 1, 3, 5,.... (2) 1, 2, 3,.... (3) $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \dots$ $(4) \frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \dots$ Sol. 4 Given trough to crest distance $1.5 = (2n_1 + 1) \lambda/2$...(1) and crest to crest distance is $5 = n_2 \lambda$...(2) n₁ & n₂ are integer $n_1 = 1, n_2 = 5$ $n_1 = 2$, n_2 is not integer $n_1 = 3$, n_2 is not integer $n_1 = 4, n_2 = 15, \qquad \lambda = 1/3$ **Q.16** Match the C_p/C_v ratio for ideal gases with different type of molecules: Molecule Type C_P/C_V (I) 7/5 (A) Monoatomic (B) Diatomic rigid molecules (II) 9/7 (C) Diatomic non-rigid molecules (III) 4/3 (D) Triatomic rigid molecules (IV) 5/3 (1) (A)-(III), (B)-(IV), (C)-(II), (D)-(I) (2) (A)-(IV), (B)-(II), (C)-(I), (D)-(III) (3) (A)-(II), (B)-(III), (C)-(I), (D)-(IV) (4) (A)-(IV), (B)-(I), (C)-(II), (D)-(III) Sol. 4 $\gamma = C_{p}/C_{v}$ $\gamma_A = 1 + \frac{2}{3} = 5/3$ $\gamma_{\rm B} = 1 + \frac{2}{5} = 7/5$ $\gamma_{\rm c} = 1 + \frac{2}{7} = 9/7$ $\gamma_{\rm D} = 1 + \frac{2}{6} = 4/3$

4th September 2020 | (Shift-1), Physics



Q.18 A Tennis ball is released from a height h and after freely falling on a wooden floor it rebounds and reaches height $\frac{h}{2}$. The velocity versus height of the ball during its motion may be represented graphically by: (graphs are drawn schematically and are not to scale)





Q.21 In the line spectra of hydrogen atoms, difference between the largest and the shortest wavelengths of the Lyman series is 304Å. The corresponding difference for the Paschen series in Å is : ______.

Sol. 10553

For shortest wave length in Lyman, we have

$$\frac{1}{\lambda} = \mathsf{R}[1] \text{ (i.e. } \mathsf{n} = \infty \text{ to } \mathsf{n} = 1\text{)}$$

For longest wave length in Lyman

$$\frac{1}{\lambda'} = R\left[1 - \frac{1}{4}\right] = \frac{3R}{4}$$

In Paschen series, for shortest wave length

$$\frac{1}{\lambda_{\rm s}} = {\rm R}\left(\frac{1}{3^2} - \frac{1}{\left(\infty\right)^2}\right)$$

$$\frac{1}{\lambda_s} = R\left(\frac{1}{3^2}\right) = \frac{R}{9}$$

And for longest wave length

$$\frac{1}{\lambda_l} = R\left(\frac{1}{3^2} - \frac{1}{4^2}\right) = \frac{7R}{144}$$

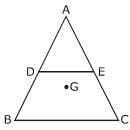
Now, taking ratio we get $(\lambda_{l} - \lambda_{s}) = 10553 \text{ Å}$

Q.22 A closed vessel contains 0.1 mole of a monoatomic ideal gas at 200 K. If 0.05 mole of the same gas at 400 K is added to it, the final equilibrium temperature (in K) of the gas in the vessel will be close to _____.
 Sol. 267

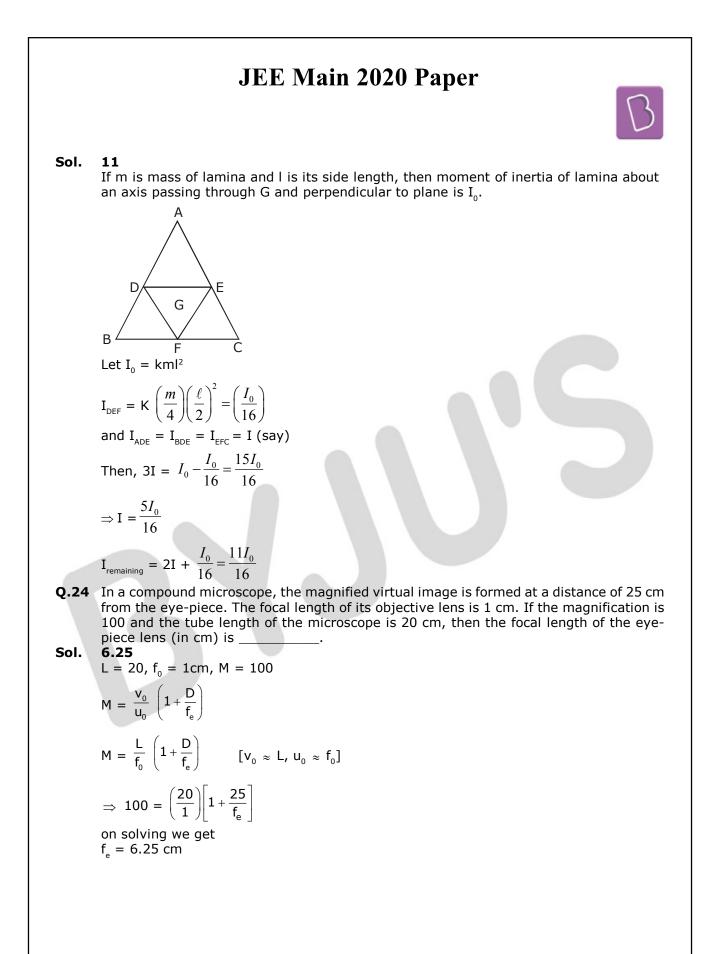
(0.1)
$$\left(\frac{3}{2}R\right)$$
 (T-200) = (0.05) $\left(\frac{3}{2}R\right)$ (400-T)
T = 266.6 K

Q.23 ABC is a plane lamina of the shape of an equilateral triangle. D, E are mid points of AB, AC and G is the centroid of the lamina. Moment of inertia of the lamina about an axis passing through G and perpendicular to the plane ABC is I_0 . If part ADE is removed, the

moment of inertia of the remaining part about the same axis is $\frac{NI_0}{16}$ where N is an integer. Value of N is _____.



4th September 2020 | (Shift-1), Physics



Q.25 A circular disc of mass M and radius R is rotating about its axis with angular speed ω_1 . If another stationary disc having radius $\frac{R}{2}$ and same mass M is droped co-axially on to the rotating disc. Gradually both discs attain constant angular speed ω_2 . The energy lost in the process is p% of the initial energy. Value of p is _____. **Sol. 20**

$$20$$

$$I_{f} \omega_{f} = I_{i} \omega_{i}$$

$$I_{i} = \frac{MR^{2}}{2}$$

$$I_{f} = \frac{MR^{2}}{2} + \frac{M(R/2)^{2}}{2}$$

$$= \frac{5}{4} \cdot \frac{MR^{2}}{2}$$

$$\left[\frac{MR^{2}}{2} + \frac{M}{2}\left(\frac{R}{2}\right)^{2}\right]\omega' = \left(\frac{MR^{2}}{2}\right)^{2}$$

$$\left[\frac{MR^{2}}{2} \cdot \left(\frac{5}{4}\right)\right]\omega' = \frac{MR^{2}}{2}\omega$$

$$\omega = \frac{1}{5} \omega$$
loss of K.E. = $\frac{Loss}{K_i} \times 100 = \frac{\omega^2 - \omega^{12} (5/4)}{\omega^2} \times 100$

$$\frac{\omega^2 - \frac{16}{25} \omega^2 (\frac{5}{4})}{\omega^2} = \left(1 - \frac{80}{100}\right) \times 100 = 20\%$$

.ω