

R D Sharma Solutions For Class 10 Maths Chapter 1-Real Numbers

Exercise 1.3

Page No: 1.35

1. Express each of the following integers as a product of its prime.

(i) **420**

Solution:

Solution:

2	468	
2	234	
3	117	
3	39	
13	13	
	1	
468	$3 = 2 \times 2 \times 3 \times 3 \times 13$	
∴ 46	$8 = 2^2 x 3^2 x 13$	

(iii) 945

Solution:

	5	945		
	3	189	-	
	3	63		
	3	21		
	7	7	_	
		1		
	94	5 = 3	3 x 3 x 3 x 5 x	7
$\therefore 945 = 3^3 x 5 x 7$				

R D Sharma Solutions For Class 10 Maths Chapter 1-Real Numbers

(iv) 7325

Solution:

$$57325$$

$$51465$$

$$293 293$$

$$1$$

$$7325 = 5 \times 5 \times 293$$

$$\therefore 7325 = 5^{2} \times 293$$

2. Determine the prime factorization of each of the following positive integer :

(i) 20570

Solution:

5	20570			
2	4114			
11	2057			
11	187			
17	17			
	1			
$20570 - 2 \times 5 \times$				

 $20570 = 2 \ge 5 \ge 11 \ge 11 \ge 17$

$$\therefore 20570 = 2 \ge 5 \ge 11^2 \ge 17$$

(ii) 58500

Solution:

5	58500	
5	11700	
5	2340	
2	468	
2	234	
3	117	
3	39	
13	13	
	1	

58500 = 2 x 2 x 3 x 3 x 5 x 5 x 5 x 13

 $\therefore 58500 = 2^2 \times 3^2 \times 5^3 \times 13$

(iii) 45470971

Solution:

7	45470971	
7	6495853	
13	927979	
13	71383	
17	5491	
17	323	
19	19	
	1	
4	5470971 :	= 7x7x13x13x17x17x19
$\therefore 45470971 = 7^2 x 13^2 x 17^2 x 19$		

3. Explain why 7 x 11 x 13 + 13 and 7 x 6 x 5 x 4 x 3 x 2 x 1 + 5 are composite numbers. Solution:

So, basically there are two types of numbers i.e., prime numbers and composite numbers.

Understanding that,

Prime numbers are those numbers having 1 and the number itself as factors. And,

Composite numbers are those numbers having factors other than 1 and itself.

It's seen that,

7 x 11 x 13 + 13 = 13 x (7 x 11 + 1) [taking 13 out as common] = 13 x (77 + 1) = 13 x 78 = 13 x 13 x 6

So, the given expression has 6 and 13 as its factors. Therefore, we can conclude that it is a composite number.

Similarly,

$$7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5 = 5 \times (7 \times 6 \times 4 \times 3 \times 2 \times 1 + 1) \text{ [taking 5 out- common]}$$
$$= 5 \times (1008 + 1)$$
$$= 5 \times 1009$$

Since, 1009 is a prime number the given expression has 5 and 1009 as its factors other than 1 and the number itself. Hence, it is also a composite number.

4. Check whether 6ⁿ can end with the digit 0 for any natural number n.

https://byjus.com

R D Sharma Solutions For Class 10 Maths Chapter 1-Real Numbers

Solution:

In order to check whether 6^n can end with the digit 0 for any natural number n, let us find the factors of 6.

It's seen that the factors of 6 are 2 and 3.

So,
$$6^n = (2 \times 3)^n$$

 $6^{n} = 2^{n} \times 3^{n}$

Since, the prime factorization of 6 does not contain 5 and 2 as its factor, together. We can thus conclude that 6^n can never end with the digit 0 for any natural number n.

5. Explain why $3 \times 5 \times 7 + 7$ is a composite number.

Solution:

So, basically there are two types of numbers i.e., prime numbers and composite numbers.

Understanding that,

Prime numbers are those numbers having 1 and the number itself as factors. And,

Composite numbers are those numbers having factors other than 1 and itself.

It's seen that,

 $3 \times 5 \times 7 + 7 = 7 \times (3 \times 5 + 1) = 7 \times (15 + 1) = 7 \times 16$

Since, the given expression has 7 and 16 as its factors we can conclude that it is a composite number.

