Exercise 1.5 Page No: 1.49

1. Show that the following numbers are irrational.

(i) $1/\sqrt{2}$

Solution:

Consider $1/\sqrt{2}$ is a rational number

Let us assume $1/\sqrt{2} = r$ where r is a rational number

On further calculation we get

 $1/r = \sqrt{2}$

Since r is a rational number, $1/r = \sqrt{2}$ is also a rational number

But we know that $\sqrt{2}$ is an irrational number

So our supposition is wrong.

Hence, $1/\sqrt{2}$ is an irrational number.

(ii) $7\sqrt{5}$

Solution:

Let's assume on the contrary that $7\sqrt{5}$ is a rational number. Then, there exist positive integers a and b such that

 $7\sqrt{5} = a/b$ where, a and b, are co-primes

 $\sqrt{5} = a/7b$ \Rightarrow

 $\sqrt{5}$ is rational \Rightarrow

[: 7, a and b are integers : a/7b is a rational number]

This contradicts the fact that $\sqrt{5}$ is irrational. So, our assumption is incorrect.

Hence, $7\sqrt{5}$ is an irrational number.

(iii) $6 + \sqrt{2}$

Solution:

Let's assume on the contrary that $6+\sqrt{2}$ is a rational number. Then, there exist co prime positive integers a and b such that

$$6 + \sqrt{2} = a/b$$

 $\sqrt{2}$ is rational

$$\Rightarrow$$
 $\sqrt{2} = a/b - 6$

$$\Rightarrow$$
 $\sqrt{2} = (a - 6b)/b$

$$\Rightarrow$$
 $\sqrt{2}$ is rational [: a and b are integers : (a-6b)/b is a rational number]

This contradicts the fact that $\sqrt{2}$ is irrational. So, our assumption is incorrect.

Hence, $6 + \sqrt{2}$ is an irrational number.

(iv)
$$3 - \sqrt{5}$$

Solution:

Let's assume on the contrary that $3-\sqrt{5}$ is a rational number. Then, there exist co prime positive integers a and b such that

$$3-\sqrt{5} = a/b$$

$$\Rightarrow$$
 $\sqrt{5} = a/b + 3$

$$\Rightarrow$$
 $\sqrt{5} = (a + 3b)/b$

⇒
$$\sqrt{5}$$
 is rational [: a and b are integers : $(a+3b)/b$ is a rational number]

This contradicts the fact that $\sqrt{5}$ is irrational. So, our assumption is incorrect.

Hence, $3-\sqrt{5}$ is an irrational number.

2. Prove that the following numbers are irrationals.

(i) $2/\sqrt{7}$

Solution:

Let's assume on the contrary that $2/\sqrt{7}$ is a rational number. Then, there exist co-prime positive integers a and b such that

$$2/\sqrt{7} = a/b$$

$$\Rightarrow$$
 $\sqrt{7} = 2b/a$

$$\Rightarrow$$
 $\sqrt{7}$ is rational

[: 2, a and b are integers : 2b/a is a rational number]

This contradicts the fact that $\sqrt{7}$ is irrational. So, our assumption is incorrect. Hence, $2/\sqrt{7}$ is an irrational number.

(ii) $3/(2\sqrt{5})$

Solution:

Let's assume on the contrary that $3/(2\sqrt{5})$ is a rational number. Then, there exist co – prime positive integers a and b such that

$$3/(2\sqrt{5}) = a/b$$

$$\Rightarrow$$
 $\sqrt{5} = 3b/2a$

$$\Rightarrow$$
 $\sqrt{5}$ is rational

[: 3, 2, a and b are integers : 3b/2a is a rational number]

This contradicts the fact that $\sqrt{5}$ is irrational. So, our assumption is incorrect. Hence, $3/(2\sqrt{5})$ is an irrational number.

(iii)
$$4 + \sqrt{2}$$

Solution:

Let's assume on the contrary that $4 + \sqrt{2}$ is a rational number. Then, there exist co prime positive integers a and b such that

$$4 + \sqrt{2} = a/b$$

$$\Rightarrow$$
 $\sqrt{2} = a/b - 4$

$$\Rightarrow$$
 $\sqrt{2} = (a - 4b)/b$

 $\sqrt{2}$ is rational

$$\Rightarrow$$
 $\sqrt{2}$ is rational [: a and b are integers : $(a - 4b)/b$ is a rational number] This contradicts the fact that $\sqrt{2}$ is irrational. So, our assumption is incorrect.

Hence, $4 + \sqrt{2}$ is an irrational number.

(iv) $5\sqrt{2}$

Solution:

Let's assume on the contrary that $5\sqrt{2}$ is a rational number. Then, there exist positive integers a and b such that

 $5\sqrt{2} = a/b$ where, a and b, are co-primes

$$\Rightarrow$$
 $\sqrt{2} = a/5b$

$$\Rightarrow$$
 $\sqrt{2}$ is rational

[: a and b are integers : a/5b is a rational number]

This contradicts the fact that $\sqrt{2}$ is irrational. So, our assumption is incorrect. Hence, $5\sqrt{2}$ is an irrational number.

3. Show that $2 - \sqrt{3}$ is an irrational number.

Solution:

Let's assume on the contrary that 2 - $\sqrt{3}$ is a rational number. Then, there exist co prime positive integers a and b such that

$$2 - \sqrt{3} = a/b$$

$$\Rightarrow$$
 $\sqrt{3} = 2 - a/b$

$$\Rightarrow$$
 $\sqrt{3} = (2b - a)/b$

$$\Rightarrow$$
 $\sqrt{3}$ is rational

[: a and b are integers : (2b - a)/b is a rational number]

This contradicts the fact that $\sqrt{3}$ is irrational. So, our assumption is incorrect.

Hence, $2 - \sqrt{3}$ is an irrational number.

4. Show that $3 + \sqrt{2}$ is an irrational number.

Solution:

Let's assume on the contrary that $3 + \sqrt{2}$ is a rational number. Then, there exist co prime positive integers a and b such that

$$3 + \sqrt{2} = a/b$$

$$\Rightarrow \qquad \sqrt{2} = a/b - 3$$

$$\Rightarrow$$
 $\sqrt{2} = (a - 3b)/b$

$$\Rightarrow$$
 $\sqrt{2}$ is rational [: a and b are integers : (a - 3b)/b is a rational number]

This contradicts the fact that $\sqrt{2}$ is irrational. So, our assumption is incorrect.

Hence, $3 + \sqrt{2}$ is an irrational number.

5. Prove that $4-5\sqrt{2}$ is an irrational number.

Solution:

Let's assume on the contrary that $4 - 5\sqrt{2}$ is a rational number. Then, there exist co prime positive integers a and b such that

$$4 - 5\sqrt{2} = a/b$$

$$\Rightarrow$$
 5 $\sqrt{2}$ = 4 - a/b

$$\Rightarrow \qquad \sqrt{2} = (4b - a)/(5b)$$

$$\Rightarrow$$
 $\sqrt{2}$ is rational

[: 5, a and b are integers : (4b - a)/5b is a rational number]

This contradicts the fact that $\sqrt{2}$ is irrational. So, our assumption is incorrect.

Hence, $4 - 5\sqrt{2}$ is an irrational number.

6. Show that $5 - 2\sqrt{3}$ is an irrational number.

Solution:

Let's assume on the contrary that $5 - 2\sqrt{3}$ is a rational number. Then, there exist co prime positive integers a and b such that

$$5 - 2\sqrt{3} = a/b$$

$$\Rightarrow$$
 $2\sqrt{3} = 5 - a/b$

$$\Rightarrow \qquad \sqrt{3} = (5b - a)/(2b)$$

$$\Rightarrow$$
 $\sqrt{3}$ is rational

[: 2, a and b are integers : (5b - a)/2b is a rational number]

This contradicts the fact that $\sqrt{3}$ is irrational. So, our assumption is incorrect.

Hence, $5 - 2\sqrt{3}$ is an irrational number.

7. Prove that $2\sqrt{3} - 1$ is an irrational number.

Solution:

Let's assume on the contrary that $2\sqrt{3} - 1$ is a rational number. Then, there exist co prime positive integers a and b such that

$$2\sqrt{3} - 1 = a/b$$

$$\Rightarrow$$
 $2\sqrt{3} = a/b + 1$

$$\Rightarrow$$
 $\sqrt{3} = (a+b)/(2b)$

$$\Rightarrow$$
 $\sqrt{3}$ is rational

[: 2, a and b are integers : (a + b)/2b is a rational number]

This contradicts the fact that $\sqrt{3}$ is irrational. So, our assumption is incorrect.

Hence, $2\sqrt{3} - 1$ is an irrational number.

8. Prove that $2 - 3\sqrt{5}$ is an irrational number.

Solution:

Let's assume on the contrary that $2 - 3\sqrt{5}$ is a rational number. Then, there exist co prime positive integers a and b such that

$$2 - 3\sqrt{5} = a/b$$

$$\Rightarrow$$
 3 $\sqrt{5}$ = 2 - a/b

$$\Rightarrow$$
 $\sqrt{5} = (2b - a)/(3b)$

$$\Rightarrow$$
 $\sqrt{5}$ is rational

[: 3, a and b are integers : (2b - a)/3b is a rational number]

This contradicts the fact that $\sqrt{5}$ is irrational. So, our assumption is incorrect.

Hence, $2 - 3\sqrt{5}$ is an irrational number.

9. Prove that $\sqrt{5} + \sqrt{3}$ is irrational.

Solution:

Let's assume on the contrary that $\sqrt{5} + \sqrt{3}$ is a rational number. Then, there exist co prime positive integers a and b such that

$$\sqrt{5} + \sqrt{3} = a/b$$

$$\Rightarrow$$
 $\sqrt{5} = (a/b) - \sqrt{3}$

$$\Rightarrow$$
 $(\sqrt{5})^2 = ((a/b) - \sqrt{3})^2$ [Squaring on both sides]

$$\Rightarrow$$
 5 = $(a^2/b^2) + 3 - (2\sqrt{3}a/b)$

$$\Rightarrow$$
 $(a^2/b^2) - 2 = (2\sqrt{3}a/b)$

$$\Rightarrow$$
 (a/b) - (2b/a) = $2\sqrt{3}$

$$\Rightarrow (a^2 - 2b^2)/2ab = \sqrt{3}$$

$$\Rightarrow$$
 $\sqrt{3}$ is rational [: a and b are integers : $(a^2 - 2b^2)/2ab$ is rational]

This contradicts the fact that $\sqrt{3}$ is irrational. So, our assumption is incorrect.

Hence, $\sqrt{5} + \sqrt{3}$ is an irrational number.

10. Prove that $\sqrt{2} + \sqrt{3}$ is irrational. Solution:

Let's assume on the contrary that $\sqrt{2} + \sqrt{3}$ is a rational number. Then, there exist co prime positive integers a and b such that

$$\sqrt{2} + \sqrt{3} = a/b$$

$$\sqrt{2} = (a/b) - \sqrt{3}$$

$$\Rightarrow \qquad \sqrt{2} = (a/b) - \sqrt{3}$$

\Rightarrow \left(\sqrt{2}\right)^2 = \left((a/b) - \sqrt{3}\right)^2 \qquad \text{[Squaring on both sides]}

$$\Rightarrow$$
 2 = $(a^2/b^2) + 3 - (2\sqrt{3}a/b)$

$$\Rightarrow$$
 $(a^2/b^2) + 1 = (2\sqrt{3}a/b)$

$$\Rightarrow (a/b) + (b/a) = 2\sqrt{3}$$

$$\Rightarrow (a^2 + b^2)/2ab = \sqrt{3}$$

$$\Rightarrow$$
 $\sqrt{3}$ is rational [: a and b are integers : $(a^2 + 2b^2)/2ab$ is rational]

This contradicts the fact that $\sqrt{3}$ is irrational. So, our assumption is incorrect.

Hence, $\sqrt{2} + \sqrt{3}$ is an irrational number.

11. Prove that for any prime positive integer p, \sqrt{p} is an irrational number. Solution:

Consider \sqrt{p} as a rational number

Assume $\sqrt{p} = a/b$ where a and b are integers and $b \neq 0$

By squaring on both sides

$$p = a^2/b^2$$

$$pb = a^2/b$$

p and b are integers $pb = a^2/b$ will also be an integer

But we know that a²/b is a rational number so our supposition is wrong

Therefore, \sqrt{p} is an irrational number.

12. If p, q are prime positive integers, prove that $\sqrt{p}+\sqrt{q}$ is an irrational number. Solution:

Let's assume on the contrary that $\sqrt{p} + \sqrt{q}$ is a rational number. Then, there exist co prime positive integers a and b such that

$$\sqrt{p} + \sqrt{q} = a/b$$

$$\Rightarrow$$
 $\sqrt{p} = (a/b) - \sqrt{q}$

$$\Rightarrow \qquad (\sqrt{p})^2 = ((a/b) - \sqrt{q})^2 \qquad [Squaring on both sides]$$

$$\Rightarrow \qquad p = (a^2/b^2) + q - (2\sqrt{q} \ a/b)$$

$$\Rightarrow$$
 $(a^2/b^2) - (p+q) = (2\sqrt{q} \ a/b)$

$$\Rightarrow (a/b) - ((p+q)b/a) = 2\sqrt{q}$$

$$\Rightarrow (a^2 - b^2(p+q))/2ab = \sqrt{q}$$

$$\Rightarrow$$
 \sqrt{q} is rational [: a and b are integers : $(a^2 - b^2(p+q))/2ab$ is rational]

This contradicts the fact that \sqrt{q} is irrational. So, our assumption is incorrect.

Hence, $\sqrt{p} + \sqrt{q}$ is an irrational number.