

Exercise 11.2

Page No: 11.9

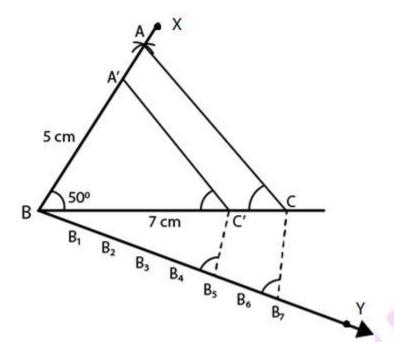
1. Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are (2/3) of the corresponding sides of it. Solution:

Steps of construction:

1. Draw a line segment BC = 5 cm.

2. With centre as B and radius 4 cm and with centre C and radius 6 cm, draw arcs from both points to intersect each other at A.

3. Now, join AB and AC. Then ABC is the triangle.


4. Draw a ray BX making an acute angle with BC and cut off 3 equal parts making $BB_1 = B_1B_2 = B_2B_3$. 5. Join B_3C .

6. Draw B₂ C' parallel to B₃C and C'A' parallel to CA.

Then, $\Delta A'BC'$ is the required triangle.

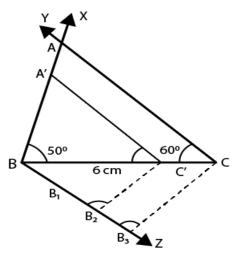
2. Construct a triangle similar to a given $\triangle ABC$ such that each of its sides is $(5/7)^{\text{th}}$ of the corresponding sides of $\triangle ABC$. It is given that AB = 5 cm, BC = 7 cm and $\angle ABC = 50^{\circ}$. Solution:

Steps of construction:

1. Draw a line segment BC = 7 cm.

2. Draw a ray BX making an angle of 50° and cut off BA = 5 cm.

3. Join AC. Then ABC is the triangle.


4. Draw a ray BY making an acute angle with BC and cut off 7 equal parts making $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_8 = B_5B_6 = B_6B_7$

5. Now, join B₇ and C

6. Draw B_5C' parallel to B_7C and C'A' parallel to CA.

Then, $\Delta A'BC'$ is the required triangle.

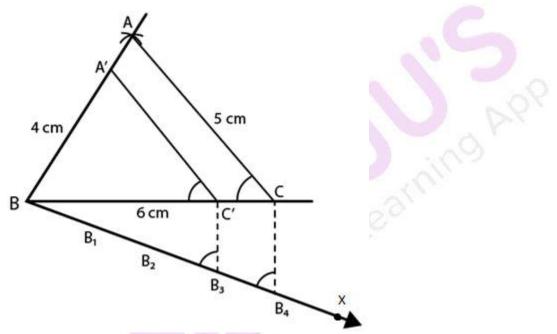
3. Construct a triangle similar to a given $\triangle ABC$ such that each of its sides is $(2/3)^{rd}$ of the corresponding sides of $\triangle ABC$. It is given that BC = 6 cm, $\angle B = 50^{\circ}$ and $\angle C = 60^{\circ}$. Solution:

Steps of construction:

https://byjus.com

1. Draw a line segment BC = 6 cm.

2. Draw a ray BX making an angle of 50° and CY making 60° with BC which intersect each other at A. Then, ABC is the triangle.


3. From B, draw another ray BZ making an acute angle below BC and then cut off 3 equal parts making $BB_1 = B_1B_2 = B_2B_3$

4. Now, join B_3C .

5. From B_2 , draw B_2C' parallel to B_3C and C'A' parallel to CA.

Then $\Delta A'BC'$ is the required triangle.

4. Draw a $\triangle ABC$ in which BC = 6 cm, AB = 4 cm and AC = 5 cm. Draw a triangle similar to $\triangle ABC$ with its sides equal to $(3/4)^{\text{th}}$ of the corresponding sides of $\triangle ABC$. Solution:

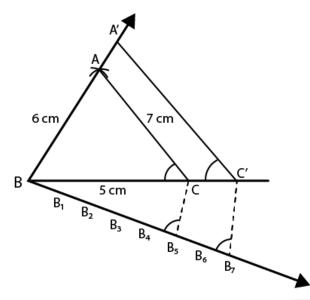
Steps of construction:

1. Draw a line segment BC = 6 cm.

2. With centre as B and radius 4 cm and with C as centre and radius 5 cm, draw arcs intersecting each other at A.

3. Join AB and AC. Then, ABC is the triangle.

4. Draw a ray BX making an acute angle with BC and cut off 4 equal parts making $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$.


5. Join B₄ and C.

6. From B_3 draw C' parallel to B_4C and from C', draw C'A' parallel to CA.

Then $\Delta A'BC'$ is the required triangle.

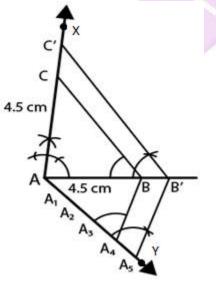
5. Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are (7/5)th of the corresponding sides of the first triangle. Solution:

Steps of construction:

1. Draw a line segment BC = 5 cm.

2. With B as centre and radius 6 cm and with C as centre and radius 7 cm, draw arcs intersecting each other at A.

3. Now, join AB and AC. Then, ABC is the triangle.


4. Draw a ray BX making an acute angle with BC and cut off 7 equal parts making $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5 = B_5B_6 = B_6B_7$.

5. Join B₅ and C.

6. From B₇, draw B₇C' parallel to B₅C and C'A' parallel CA.

Then, $\Delta A'BC'$ is the required triangle.

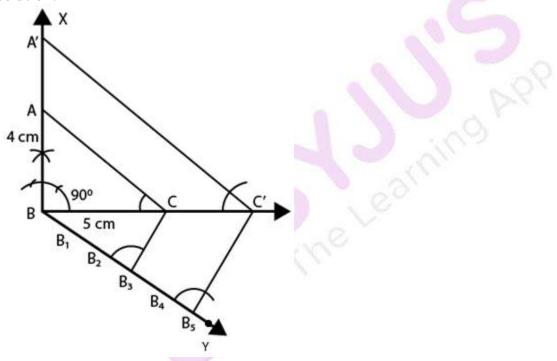
6. Draw a right triangle ABC in which AC = AB = 4.5 cm and $\angle A = 90^{\circ}$. Draw a triangle similar to $\triangle ABC$ with its sides equal to $(5/4)^{\text{th}}$ of the corresponding sides of $\triangle ABC$. Solution:

Steps of construction:

- 1. Draw a line segment AB = 4.5 cm.
- 2. At A, draw a ray AX perpendicular to AB and cut off AC = AB = 4.5 cm.
- 3. Now, join BC. Then, ABC is the triangle.

4. Draw a ray AY making an acute angle with AB and cut off 5 equal parts making $AA_1 = A_1A_2 =$

 $A_2A_3 = A_3A_4 = A_4A_5$


5. Join A_4 and B.

6. From A_5 , draw A_5B' parallel to A_4B and B'C' parallel to BC.

Then, $\Delta AB'C'$ is the required triangle.

7. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 5 cm and 4 cm. Then construct another triangle whose sides are 5/3 times the corresponding sides of the given triangle.

Solution:

Steps of construction:

- 1. Draw a line segment BC = 5 cm.
- 2. At B, draw perpendicular BX and cut off BA = 4 cm.
- 3. Now, join AC. Then, ABC is the triangle
- 4. Draw a ray BY making an acute angle with BC and cut off 5 equal parts making $BB_1 = B_1B_2 = B_2B_3 =$
- $B_3B_4 = B_4B_5$
- 5. Join B₃ and C.
- 6. From B_5 , draw B_5C' parallel to B_3C and C'A' parallel to CA.

Then, $\Delta A'BC'$ is the required triangle.