EXERCISE 2.1

1. Define:
(i) factor
(ii) multiple

Give four examples each.

Solution:

(i) A factor of a number is an exact divisor of that number.

Example:

1. 5 and 2 are factors of 10 i.e. $5 \times 2=10$
2. 4 and 3 are factors of 12 i.e. $4 \times 3=12$
3. 4 and 2 are factors of 8 i.e. $4 \times 2=8$
4. 2 and 6 are factors of 12 i.e. $2 \times 6=12$
(ii) A multiple of a number is a number obtained by multiplying it by a natural number.

Example:

1. 10 is a multiple of 2 i.e. $2 \times 5=10$
2. 12 is a multiple of 4 i.e. $4 \times 3=12$
3. 8 is a multiple of 2 i.e. $2 \times 4=8$
4. 21 is a multiple of 3 i.e. $3 \times 7=21$
5. Write all factors of each of the following numbers:
(i) 60
(ii) 76
(iii) 125
(iv) 729

Solution:
(i) 60

It can be written as
$1 \times 60=60$
$2 \times 30=60$
$3 \times 20=60$
$4 \times 15=60$
$5 \times 12=60$
$6 \times 10=60$
Therefore, the factors of 60 are $1,2,3,4,5,6,10,12,15,20,30$ and 60.
(ii) 76

It can be written as
$1 \times 76=76$
$2 \times 38=76$
$4 \times 19=76$
Therefore, the factors of 76 are $1,2,4,19,38$ and 76 .
(iii) 125

It can be written as
$1 \times 125=125$
$5 \times 25=125$
Therefore, the factors of 125 are $1,5,25$ and 125.
(iv) 729

It can be written as
$1 \times 729=729$
$3 \times 243=729$
$9 \times 81=729$
$27 \times 27=729$
Therefore, the factors of 729 are $1,3,9,27,81,243$ and 729 .
3. Write first five multiples of each of the following numbers:
(i) 25
(ii) 35
(iii) 45
(iv) 40

Solution:
(i) 25

It can be written as
$1 \times 25=25$
$2 \times 25=50$
$3 \times 25=75$
$4 \times 25=100$
$5 \times 25=125$
Therefore, the first five multiples of 25 are $25,50,75,100$ and 125.
(ii) 35

It can be written as
$1 \times 35=35$
$2 \times 35=70$
$3 \times 35=105$
$4 \times 35=140$
$5 \times 35=175$
Therefore, the first five multiples of 35 are 35, 70, 105, 140 and 175.
(iii) 45

It can be written as
$1 \times 45=45$
$2 \times 45=90$
$3 \times 45=135$
$4 \times 45=180$
$5 \times 45=225$
Therefore, the first five multiples of 45 are 45, 90, 135, 180 and 225.

RD Sharma Solutions for Class 6 Maths Chapter 2 -
 Playing with Numbers

(iv) 40

It can be written as
$1 \times 40=40$
$2 \times 40=80$
$3 \times 40=120$
$4 \times 40=160$
$5 \times 40=200$

Therefore, the first five multiples of 40 are 40, 80, 120, 160 and 200.

4. Which of the following numbers have 15 as their factor?

(i) 15625
(ii) 123015

Solution:

(i) 15625

We know that 15 is not a factor of 15625 as it is not a divisor of 15625 .
(ii) 123015

We know that 15 is a factor of 123015 as it is a divisor of 123015 because $8201 \times 15=123015$.
5. Which of the following numbers are divisible by 21 ?
(i) 21063
(ii) 20163

Solution:
(i) 21063

We know that the sum of digits $=2+1+0+6+3=12$ which is divisible by 3
So 21063 is divisible by 3
A number is divisible by 7 if the difference between two times ones digit and the number formed by other digit is 0 or multiple of 7 .
We get
$2106-(2 \times 3)=2100$ which is a multiple of 7 .
Therefore, 21063 is divisible by 21.
(ii) 20163

We know that the sum of digits $=2+0+1+6+3=12$ which is divisible by 3
So 20163 is divisible by 3
A number is divisible by 7 if the difference between two times ones digit and the number formed by other digit is 0 or multiple of 7 .
We get
$2016-(2 \times 3)=2010$ which is not a multiple of 7 .
Therefore, 20163 is not divisible by 21.
6. Without actual division show that 11 is a factor of each of the following numbers:
(i) 1111
(ii) 11011
(iii) 110011
(iv) 1100011

Solution:

(i) 1111

Sum of digits at the odd places $=1+1=2$
Sum of digits at the even places $=1+1=2$
So the difference between the two sums $=2-2=0$
Hence, 1111 is divisible by 11 as the difference between the two sums is zero.
(ii) 11011

Sum of digits at the odd places $=1+0+1=2$
Sum of digits at the even places $=1+1=2$
So the difference between the two sums $=2-2=0$

Hence, 11011 is divisible by 11 as the difference between the two sums is zero.
(iii) 110011

Sum of digits at the odd places $=1+0+1=2$
Sum of digits at the even places $=1+0+1=2$
So the difference between the two sums $=2-2=0$
Hence, 110011 is divisible by 11 as the difference between the two sums is zero.
(iv) 1100011

Sum of digits at the odd places $=1+0+0+1=2$
Sum of digits at the even places $=1+0+1=2$
So the difference between the two sums $=2-2=0$

Hence, 1100011 is divisible by 11 as the difference between the two sums is zero.
7. Without actual division show that each of the following numbers is divisible by 5:
(i) 55
(ii) 555
(iii) 5555
(iv) 50005

Solution:
(i) 55

The units digit in 55 is 5 .
Therefore, 55 is divisible by 5 .
(ii) 555

The units digit in 555 is 5 .
Therefore, 555 is divisible by 5 .
(iii) 5555

The units digit in 5555 is 5 .
Therefore, 5555 is divisible by 5 .
(iv) 50005

The units digit in 50005 is 5 .
Therefore, 50005 is divisible by 5 .
8. Is there any natural number having no factor at all?

Solution:

No. All the natural numbers are a factor of itself.
9. Find numbers between 1 and 100 having exactly three factors.

Solution:

We know that the numbers between 1 and 100 which have exactly three factors are $4,9,25$ and 49 .
Factors of 4 are 1, 2 and 4.
Factors of 9 are 1,3 and 9.
Factors of 25 are 1, 5 and 25.
Factors of 49 are 1, 7 and 49.
10. Sort out even and odd numbers:
(i) 42
(ii) 89
(iii) 144
(iv) 321

Solution:

We know that
The numbers which are divisible by 2 are even and those which are not divisible by 2 are odd numbers. So we get
42 and 144 are even numbers and 89 and 321 are odd numbers.

