## EXERCISE 2.4

1. In which of the following expressions, prime factorization has been done?
(i) $24=2 \times 3 \times 4$
(ii) $\mathbf{5 6}=1 \times 7 \times 2 \times 2 \times 2$
(iii) $70=2 \times 5 \times 7$
(iv) $54=2 \times 3 \times 9$

Solution:
(i) We know that
$24=2 \times 3 \times 4$ is not a prime factorization since 4 is not a prime number.
(ii) We know that
$56=1 \times 7 \times 2 \times 2 \times 2$ is not a prime factorization since 1 is not a prime number.
(iii) We know that
$70=2 \times 5 \times 7$ is a prime factorization since 2,5 and 7 are prime numbers.
(iv) We know that
$54=2 \times 3 \times 9$ is not a prime factorization since 9 is not a prime number.
2. Determine prime factorization of each of the following numbers:
(i) 216
(ii) 420
(iii) 468
(iv) 945
(v) 7325
(vi) 13915

Solution:
(i) 216

We know that

| 2 | 216 |
| :---: | :---: |
| 2 | 108 |
| 2 | 54 |
| 3 | 27 |
| 3 | 9 |
|  | 3 |
|  |  |

Hence, the prime factorization of 216 is $2 \times 2 \times 2 \times 3 \times 3 \times 3$.
(ii) 420

We know that

| 2 | 420 |
| :---: | :---: |
| 2 | 210 |
| 3 | 105 |
| 7 | 35 |
|  | 7 |
|  |  |

Hence, the prime factorization of 420 is $2 \times 2 \times 3 \times 5 \times 7$.
(iii) 468

We know that

| 2 | 468 |
| :---: | :---: |
| 2 | 234 |
| 3 | 117 |
| 13 | 39 |
|  | 13 |
|  |  |

Hence, the prime factorization of 468 is $2 \times 2 \times 3 \times 3 \times 13$.
(iv) 945

We know that

| 3 | 945 |
| :---: | :---: |
| 3 | 315 |
| 3 | 105 |
| 7 | 35 |
|  | 7 |
|  |  |

Hence, the prime factorization of 945 is $3 \times 3 \times 3 \times 5 \times 7$.
(v) 7325

We know that

| 3 | 7325 |
| :---: | :---: |
| 5 | 1465 |
| 293 | 293 |
|  | 1 |

Hence, the prime factorization of 7325 is $5 \times 5 \times 293$.
(vi) 13915

We know that

| 3 | 13915 |
| :--- | :---: |
| 11 | 2783 |
| 11 | 253 |
| 23 | 23 |
|  | 1 |

Hence, the prime factorization of 13915 is $5 \times 11 \times 11 \times 23$.
3. Write the smallest 4-digit number and express it as a product of primes.

Solution:
1000 is the smallest 4-digit number.
We know that
$1000=2 \times 500$

$$
=2 \times 2 \times 250
$$

So we get
$1000=2 \times 2 \times 2 \times 125$
It can be further expanded as
$1000=2 \times 2 \times 2 \times 5 \times 25$
We get
$1000=2 \times 2 \times 2 \times 5 \times 5 \times 5$
Therefore, the smallest 4-digit number is 1000 and can be expressed as $2 \times 2 \times 2 \times 5 \times 5 \times 5$.
4. Write the largest 4-digit number and give its prime factorization.

Solution:
9999 is the largest 4-digit number

| We know that |  |
| :---: | :---: |
| 3 | 9999 |
| 3 | 3333 |
| 11 | $\mathbf{1 1 1 1}$ |
| 101 | $\mathbf{1 0 1}$ |
|  | 1 |

Therefore, 9999 is the largest 4-digit number and can be expressed as $3 \times 3 \times 11 \times 101$.
5. Find the prime factors of $\mathbf{1 7 2 9}$. Arrange the factors in ascending order, and find the relation between two consecutive prime factors.

## Solution:

We know that

| 7 | 1729 |
| :---: | :---: |
| 13 | 247 |
| 19 | 19 |
|  | 1 |

Hence, 1729 can be expressed as $7 \times 13 \times 19$
We know that the consecutive prime factors of 1729 are 7, 13 and 19
$13-7=6$
$19-13=6$
Therefore, in the two consecutive prime factors each factor is 6 more than the previous factor.
6. Which factors are not included in the prime factorization of a composite number?

Solution:
1 and the number itself are not included in the prime factorization of a composite number.

For example, 4 is a composite number having prime factorization $2 \times 2$.
7. Here are two different factor trees for $\mathbf{6 0}$. Write the missing numbers:
(i)

(ii)


## Solution:

(i) We know that
$6=2 \times 3$
$10=5 \times 2$

(ii) We know that
$60=30 \times 2$
$30=10 \times 3$

BYJU'S
The Learning App Playing with Numbers
$10=2 \times 5$


