EXERCISE 2.6

1. Find the HCF of the following numbers using prime factorization method:
(i) 144,198
(ii) 81,117
(iii) 84,98
(iv) 225, 450
(v) 170, 238
(vi) 504, 980
(vii) 150, 140, 210
(viii) 84, 120, 138
(ix) 106, 159, 265

Solution:
(i) 144,198

We know that the prime factorization of $144=2 \times 2 \times 2 \times 2 \times 3 \times 3$
The same way prime factorization of $198=2 \times 3 \times 3 \times 11$
Hence, HCF of 144,198 is $2 \times 3 \times 3=18$
(ii) 81,117

We know that prime factorization of $81=3 \times 3 \times 3 \times 3$
The same way prime factorization of $117=3 \times 3 \times 13$
Hence, HCF of $81,117=3 \times 3=9$
(iii) 84,98

We know that prime factorization of $84=2 \times 2 \times 3 \times 7$
The same way prime factorization of $98=2 \times 7 \times 7$
Hence, HCF of $84,98=2 \times 7=14$
(iv) 225,450

We know that prime factorization of $225=3 \times 3 \times 5 \times 5$
The same way prime factorization of $450=2 \times 3 \times 3 \times 5 \times 5$
Hence, HCF of $225,450=3 \times 3 \times 5 \times 5=225$
(v) 170, 238

We know that prime factorization of $170=2 \times 5 \times 17$
The same way prime factorization of $238=2 \times 7 \times 17$
Hence, HCF of $170,238=2 \times 17=34$
(vi) 504,980

We know that the prime factorization of $504=2 \times 2 \times 2 \times 3 \times 3 \times 7$
The same way prime factorization of $980=2 \times 2 \times 5 \times 7 \times 7$
Hence, HCF of $504,980=2 \times 2 \times 7=28$
(vii) $150,140,210$

We know that prime factorization of $150=2 \times 3 \times 5 \times 5$
The same way prime factorization of $140=2 \times 2 \times 5 \times 7$
Prime factorization of $210=2 \times 3 \times 5 \times 7$
Hence, HCF of $150,140,210=2 \times 5=10$
(viii) $84,120,138$

We know that prime factorization of $84=2 \times 2 \times 3 \times 7$
The same way prime factorization of $120=2 \times 2 \times 2 \times 3 \times 5$
Prime factorization of $138=2 \times 3 \times 23$
Hence, HCF of $84,120,138=2 \times 3=6$
(ix) 106, 159, 265

We know that prime factorization of $106=2 \times 53$
The same way prime factorization of $159=3 \times 53$
Prime factorization of $265=5 \times 53$
Hence, HCF of 106, 159, $265=53$
2. What is the HCF of two consecutive
(i) Numbers
(ii) even numbers
(iii) odd numbers

Solution:
(i) We know that the common factor of two consecutive numbers is 1 .

Hence, HCF of two consecutive numbers is 1 .
(ii) We know that the common factors of two consecutive even numbers are 1 and 2.

Hence, HCF of two consecutive even numbers is 2 .
(iii) We know that the common factors of two consecutive odd numbers is 1 .

Hence, HCF of two consecutive odd numbers is 1 .
3. HCF of co-prime numbers 4 and 15 was found as follows:
$4=2 \times 2$ and $15=3 \times 5$
Since there is no common prime factor. So, HCF of 4 and 15 is 0 . Is the answer correct? If not, what is the correct HCF?
Solution:
No. It is not correct.
The HCF of two co-prime numbers is 1 .
We know that 4 and 15 are co-prime numbers having common factor 1 .
Therefore, HCF of 4 and 15 is 1 .

