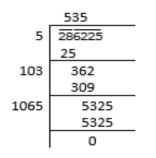


EXERCISE 3.5

PAGE NO: 3.43

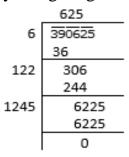
1.Find the square root of each of the following by long division method: (i) 12544 (ii) 97344	
(iii) 286225 (iv) 390625	
(v) 363609 (vi) 974169	
(vii) 120409 (viii) 1471369	
(ix) 291600 (x) 9653449	
(xi) 1745041 (xii) 4008004	
(xii) 20657025 (xiv) 152547201	
(xv) 20421361 (xvi)62504836	
(xvii) 82264900 (xviii) 3226694416	
(xix) 6407522209 (xx) 3915380329	
Solution:	
(i) 12544	
By using long division method	
112	
1 12544	
21 25 21	
222 444	
444	
0	
∴ the square root of 12544	
$\sqrt{12544} = 112$	

(ii) 97344 By using long division method



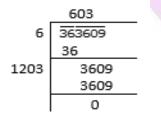
 \therefore the square root of 97344 $\sqrt{97344} = 312$

(iii) 286225


By using long division method

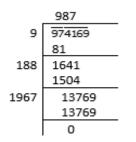
 $\therefore \text{ the square root of } 286225 \\ \sqrt{286225} = 535$

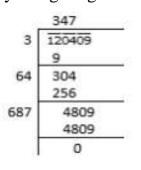
(**iv**) 390625


By using long division method

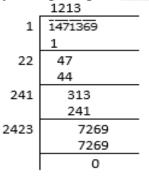
 $\therefore \text{ the square root of } 390625 \\ \sqrt{390625} = 625$

(v) 363609


By using long division method

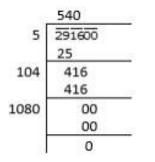

 $\therefore \text{ the square root of 363609} \\ \sqrt{36369} = 603$

(vi) 974169 By using long division method

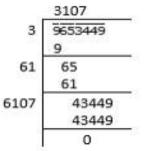

∴ the square root of 974169 $\sqrt{974169} = 987$ (vii) 120409 By using long division method

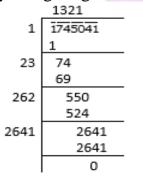
 $\therefore \text{ the square root of } 120409 \\ \sqrt{120409} = 347$

(viii) 1471369


By using long division method

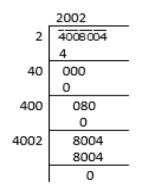
: the square root of 1471369 $\sqrt{1471369} = 1213$


(ix) 291600 By using long division method


 $\therefore \text{ the square root of } 291600 \\ \sqrt{291600} = 540$

(x) 9653449 By using long division method

 $\therefore \text{ the square root of } 9653449 \\ \sqrt{9653449} = 3107$


(xi) 1745041 By using long division method

 $\therefore \text{ the square root of } 1745041 \\ \sqrt{1745041} = 1321$

(**xii**) 4008004 By using long division method

 $\therefore \text{ the square root of } 4008004 \\ \sqrt{4008004} = 2002$

(xiii) 20657025

By using long division method

	4545	
4	20657025	
	16	
85	465	
	425	
904	4070	
	3616	
9085	45425	
	45425	_
ļ	0	

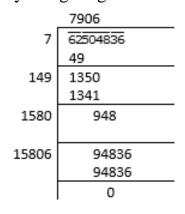
: the square root of 20657025 $\sqrt{20657025} = 4545$

(xiv) 152547201

By using long division method

	12351
1	152547201
	1
22	52
	44
243	854
	729
2465	12572
	12325
27701	24701
	24701
	0

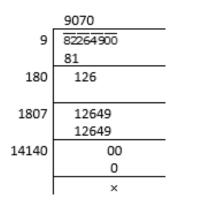
: the square root of 152547201 $\sqrt{152547201} = 12351$


(**xv**) 20421361

By using long division method

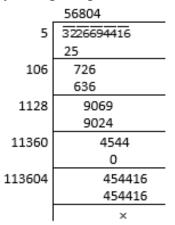
	4519	
4	20421361	
	16	
85	442	
	425	
901	1713	
	901	
9029	81261	
	81261	
	0	

: the square root of 20421361 $\sqrt{20421361} = 4519$


(xvi) 62504836 By using long division method

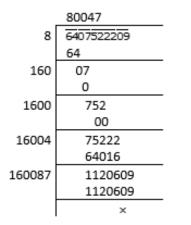
: the square root of 62504836 $\sqrt{62504836} = 7906$

(**xvii**) 82264900 By using long division method

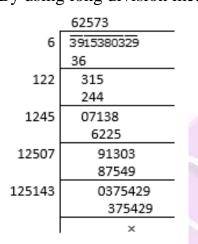


: the square root of 82264900 $\sqrt{82264900} = 9070$

(**xviii**) 3226694416


By using long division method

: the square root of 3226694416 $\sqrt{3226694416} = 56804$

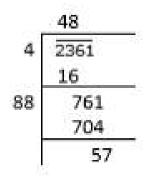

(**xix**) 6407522209 By using long division method

: the square root of 6407522209 $\sqrt{6407522209} = 80047$

(**xx**) 3915380329 By using long division method

: the square root of 3915380329 $\sqrt{3915380329} = 62573$

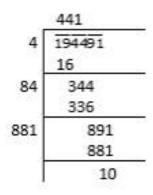
2. Find the least number which must be subtracted from the following numbers to make them a perfect square:


(i) 2361 (ii) 194491 (iii) 26535 (iv) 161605

(v) 4401624

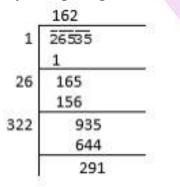
Solution:

- (**i**) 2361
- By using long division method



 \therefore 57 has to be subtracted from 2361 to get a perfect square.

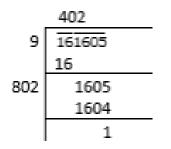
(ii) 194491


By using long division method

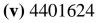
 \therefore 10 has to be subtracted from 194491 to get a perfect square.

(iii) 26535

By using long division method



 \therefore 291 has to be subtracted from 26535 to get a perfect square.


(**iv**) 161605

By using long division method

 \therefore 1 has to be subtracted from 161605 to get a perfect square.

By using long division method

Dy us	ing iong divisio	in method
	2098	
2	4401624	
	4	0
40	40	
	0	
409	4016	
	3681	
4188	33524	
	33504	
	20	

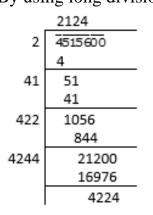
 \therefore 20 has to be subtracted from 4401624 to get a perfect square.

3. Find the least number which must be added to the following numbers to make them a perfect square:

(i) 5607 (ii)4931 (iii) 4515600 (iv) 37460 (v) 506900 Solution: (i) 5607 By using long division method

The remainder is 131 Since, $(74)^2 < 5607$ We take, the next perfect square number i.e., $(75)^2$ $(75)^2 = 5625 > 5607$ So, the number to be added = 5625 - 5607 = 18

(ii) 4931


By using long division method

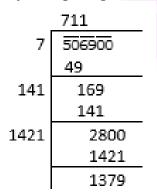
The remainder is 31 Since, $(70)^2 < 4931$

We take, the next perfect square number i.e., $(71)^2$ $(71)^2 = 5041 > 4931$

So, the number to be added = 5041 - 4931 = 110

(iii) 4515600 By using long division method

The remainder is 4224 Since, $(2124)^2 < 4515600$ We take, the next perfect square number i.e., $(2125)^2$ $(2125)^2 = 4515625 > 4515600$ So, the number to be added = 4515625 - 4515600 = 25

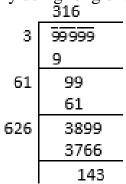

(iv) 37460 By using long division method

	193
1	37460
	1
29	274
	261
383	1360
	1149
	211

The remainder is 211 Since, $(193)^2 < 37460$ We take, the next perfect square number i.e., $(194)^2$ $(194)^2 = 37636 > 37460$ So, the number to be added = 37636 - 37460 = 176

(**v**) 506900

By using long division method


The remainder is 1379 Since, $(711)^2 < 506900$ We take, the next perfect square number i.e., $(712)^2$ $(712)^2 = 506944 > 506900$ So, the number to be added = 506944 - 506900 = 44

4. Find the greatest number of 5 digits which is a perfect square.

Solution:

We know that the greatest 5 digit number is 99999 By using long division method

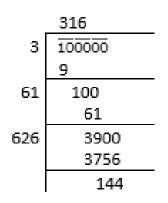
The remainder is 143

So, the greatest 5 digit perfect square number is:

99999 - 143 = 99856

: 99856 is the required greatest 5 digit perfect square number.

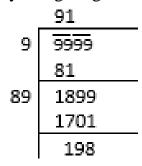
5. Find the least number of 4 digits which is a perfect square. Solution:


We know that the least 4 digit number is 1000 By using long division method

The remainder is 39 Since, $(31)^2 < 1000$ We take, the next perfect square number i.e., $(32)^2$ $(32)^2 = 1024 > 1000$ \therefore 1024 is the required least number 4 digit number which is a perfect square.

6. Find the least number of six digits which is a perfect square. Solution:

We know that the least 6 digit number is 100000 By using long division method



The remainder is 144 Since, $(316)^2 < 100000$ We take, the next perfect square number i.e., $(317)^2$ $(317)^2 = 100489 > 100000$

 \therefore 100489 is the required least number 6 digit number which is a perfect square.

7. Find the greatest number of 4 digits which is a perfect square. Solution:

We know that the greatest 4 digit number is 9999 By using long division method

The remainder is 198 So, the greatest 4 digit perfect square number is: 9999 – 198 = 9801 ∴ 9801 is the required greatest 4 digit perfect square number.

8. A General arranges his soldiers in rows to form a perfect square. He finds that in doing so, 60 soldiers are left out. If the total number of soldiers be 8160, find the number of soldiers in each row

Solution:

We know that the total number of soldiers = 8160

Number of soldiers left out = 60

Number of soldiers arranged in rows to form a perfect square = 8160 - 60 = 8100

 \therefore number of soldiers in each row = $\sqrt{8100}$

$$= \sqrt{(9 \times 9 \times 10 \times 10)}$$
$$= 9 \times 10$$
$$= 90$$

9. The area of a square field is 60025m². A man cycles along its boundary at 18 Km/hr. In how much time will he return at the starting point?

Solution:

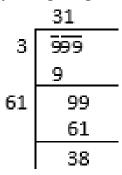
We know that the area of square field = 60025 m^2 Speed of cyclist = 18 km/h = $18 \times (1000/60 \times 60)$ = 5 m/s^2 Area = 60025 m^2 Side² = 60025Side = $\sqrt{60025}$ = 245We know, Total length of boundary = $4 \times \text{Side}$ = 4×245 = 980 m

 \therefore Time taken to return to the starting point = 980/5

= 196 seconds

= 3 minutes 16 seconds

10. The cost of levelling and turning a square lawn at Rs 2.50 per m² is Rs13322.50 Find the cost of fencing it at Rs 5 per metre. Solution:


We know that the cost of levelling and turning a square lawn = 2.50 per m² Total cost of levelling and turning = Rs. 13322.50 Total area of square lawn = 13322.50/2.50 $= 5329 \text{ m}^2$ Side² = 5329 Side of square lawn = $\sqrt{5329}$ = 73 mSo, total length of lawn = 4 × 73 = 292 m \therefore Cost of fencing the lawn at Rs 5 per metre = 292×5 = Rs. 1460

11. Find the greatest number of three digits which is a perfect square.

Solution:

We know that the greatest 3 digit number is 999 By using long division method

The remainder is 38

So, the greatest 3 digit perfect square number is:

999 - 38 = 961

: 961 is the required greatest 3 digit perfect square number.

12. Find the smallest number which must be added to 2300 so that it becomes a perfect square.

Solution:

By using long division method let's find the square root of 2300

The remainder is 91 Since, $(47)^2 < 2300$ We take, the next perfect square number i.e., $(48)^2$ $(48)^2 = 2304 > 2300$ \therefore The smallest number required to be added to 2300 to get a perfect square is 2304 - 2300 = 4