

## **EXERCISE 3.7**

## PAGE NO: 3.52

#### Find the square root of the following numbers in decimal form: 1. 84.8241 Solution:

By using long division method

 $\therefore \text{ the square root of } 84.8241 \\ \sqrt{84.8241} = 9.21$ 

## 2.0.7225

## Solution: By using long division method

 $\therefore \text{ the square root of } 0.7225 \\ \sqrt{0.7225} = 0.85$ 

## 3. 0.813604

Solution:

By using long division method





: the square root of 0.813604  $\sqrt{0.813604} = 0.902$ 

## 4. 0.00002025

#### Solution:

By using long division method 0.0045

| 0.00002025 |  |  |
|------------|--|--|
| 0 0 0      |  |  |
| 20         |  |  |
| 16         |  |  |
| 425        |  |  |
| 425        |  |  |
| 0          |  |  |
|            |  |  |

: the square root of 0.00002025  $\sqrt{0.00002025} = 0.0045$ 

## 5.150.0625

#### Solution:

By using long division method



: the square root of 150.0625  $\sqrt{150.0625} = 12.25$ 



## 6. 225.6004

Solution:

By using long division method



: the square root of 225.6004  $\sqrt{225.6004} = 15.02$ 

#### 7. 3600.720036 Solution:

By using long division method



: the square root of 3600.720036  $\sqrt{3600.720036} = 60.006$ 

#### 8. 236.144689 Solution:

By using long division method





: the square root of 236.144689  $\sqrt{236.144689} = 15.367$ 

## 9. 0.00059049

#### Solution:

By using long division method



: the square root of 0.00059049  $\sqrt{0.00059049} = 0.0243$ 

#### 10. 176.252176 Solution:

By using long division method



: the square root of 176.252176  $\sqrt{176.252176} = 13.276$ 

#### 11. 9998.0001 Solution:

By using long division method



: the square root of 9998.0001  $\sqrt{9998.0001} = 99.99$ 

## 12. 0.00038809

**Solution:** By using long division method

RD Sharma Solutions for Class 8 Maths Chapter 3 – Squares and Square Roots





: the square root of 0.00038809  $\sqrt{0.00038809} = 0.0197$ 

## 13. What is that fraction which when multiplied by itself gives 227.798649? Solution:

Let us consider a number a Where,  $a = \sqrt{227.798649}$ = 15.093

By using long division method let us verify

|       | 15.093     |  |
|-------|------------|--|
| 1     | 227.798649 |  |
|       | 1          |  |
| 25    | 127        |  |
|       | 125        |  |
| 300   | 279        |  |
|       | 0          |  |
| 3009  | 27986      |  |
|       | 27081      |  |
| 30183 | 90549      |  |
|       | 90549      |  |
|       | 0          |  |
|       |            |  |

 $\therefore$  15.093 is the fraction which when multiplied by itself gives 227.798649.

# 14. The area of a square playground is 256.6404 square meter. Find the length of one side of the playground.

#### Solution:

We know that the given area of a square play ground = 256.6404 i.e.,  $L^2 = 256.6404 \text{ m}^2$ 

https://byjus.com



 $L = \sqrt{256.6404}$ = 16.02m

By using long division method let us verify



 $\therefore$  length of one side of the playground is 16.02m.

## **15.** What is the fraction which when multiplied by itself gives 0.00053361? Solution:

Let us consider a number a Where,  $a = \sqrt{0.00053361}$ 

= 0.0231

By using long division method let us verify



 $\therefore$  0.0231 is the fraction which when multiplied by itself gives 0.00053361.

```
16. Simplify:

(i) (\sqrt{59.29} - \sqrt{5.29})/(\sqrt{59.29} + \sqrt{5.29})

(ii) (\sqrt{0.2304} + \sqrt{0.1764})/(\sqrt{0.2304} - \sqrt{0.1764})

Solution:

(i) (\sqrt{59.29} - \sqrt{5.29})/(\sqrt{59.29} + \sqrt{5.29})

Firstly let us find the square root \sqrt{59.29} and \sqrt{5.29}
```

https://byjus.com

B BYJU'S

RD Sharma Solutions for Class 8 Maths Chapter 3 – Squares and Square Roots

$$\sqrt{59.29} = \sqrt{5929} / \sqrt{100}$$
  
= 77/10  
= 7.7  
$$\sqrt{5.29} = \sqrt{5.29} / \sqrt{100}$$
  
= 23/10  
= 2.3  
So, (7.7 - 2.3)/ (7.7 + 2.3)  
= 54/10  
= 0.54

(ii)  $(\sqrt{0.2304} + \sqrt{0.1764})/(\sqrt{0.2304} - \sqrt{0.1764})$ Firstly let us find the square root  $\sqrt{0.2304}$  and  $\sqrt{0.1764}$   $\sqrt{0.2304} = \sqrt{2304}/\sqrt{10000}$  = 48/100 = 0.48  $\sqrt{0.1764} = \sqrt{1764}/\sqrt{10000}$  = 42/100 = 0.42So, (0.48 + 0.42)/(0.48 - 0.42) = 0.9/0.06= 15

## 17. Evaluate $\sqrt{50625}$ and hence find the value of $\sqrt{506.25} + \sqrt{5.0625}$ Solution:

By using long division method let us find the  $\sqrt{50625}$ 

225 50625 2 4 42 106 84 445 2225 2225 0 So now,  $\sqrt{506.25} = \sqrt{50625} / \sqrt{100}$ = 225/10= 22.5 $\sqrt{5.0625} = \sqrt{50625} / \sqrt{10000}$ = 225/100

https://byjus.com



So equating in the above equation we get,  $\sqrt{506.25} + \sqrt{5.0625} = 22.5 + 2.25$ = 24.75

18. Find the value of  $\sqrt{103.0225}$  and hence find the value of (i) √10302.25 (ii) √1.030225 Solution: By using long division method let us find the  $\sqrt{103.0225} = \sqrt{(1030225/10000)} = \sqrt{1030225}/\sqrt{10000}$ 1015 1 03 02 25 1 1 0302 201 201 10125 2025 10125 0 So now, (i) $\sqrt{10302.25} = \sqrt{(1030225/100)}$ = 1015/10= 101.5 (ii) $\sqrt{1.030225} = \sqrt{1030225} / \sqrt{1000000}$ = 1015/1000= 1.015