

RD Sharma Solutions for Class 8 Maths Chapter 7 – Factorization

EXERCISE 7.9

PAGE NO: 7.32

Factorize each of the following quadratic polynomials by using the method of completing the square: 1. $p^2 + 6p + 8$ **Solution:** We have, $p^2 + 6p + 8$ Coefficient of p^2 is unity. So, we add and subtract square of half of coefficient of p. $p^{2} + 6p + 8 = p^{2} + 6p + 3^{2} - 3^{2} + 8$ (Adding and subtracting 3²) $= (p+3)^2 - 1^2$ (By completing the square) By using the formula $(a^2 - b^2) = (a+b)(a-b)$ = (p + 3 - 1) (p + 3 + 1)= (p + 2) (p + 4)**2.** $q^2 - 10q + 21$ Solution: We have, $q^2 - 10q + 21$ Coefficient of q^2 is unity. So, we add and subtract square of half of coefficient of q. $q^2 - 10q + 21 = q^2 - 10q + 5^2 - 5^2 + 21$ (Adding and subtracting 5²) $= (q-5)^2 - 2^2$ (By completing the square) By using the formula $(a^2 - b^2) = (a+b) (a-b)$ = (q - 5 - 2) (q - 5 + 2)= (q - 3) (q - 7)3. $4v^2 + 12v + 5$ **Solution:** We have, $4y^2 + 12y + 5$ $4(y^2 + 3y + 5/4)$ Coefficient of y^2 is unity. So, we add and subtract square of half of coefficient of y. $4(y^2 + 3y + 5/4) = 4[y^2 + 3y + (3/2)^2 - (3/2)^2 + 5/4]$ (Adding and subtracting $(3/2)^2$) $= 4 [(y + 3/2)^2 - 1^2]$ (Completing the square) By using the formula $(a^2 - b^2) = (a+b) (a-b)$ = 4 (y + 3/2 + 1) (y + 3/2 - 1)= 4 (y + 1/2) (y + 5/2) (by taking LCM) = 4 [(2y + 1)/2] [(2y + 5)/2]= (2y + 1) (2y + 5)

4. $p^2 + 6p - 16$ Solution: We have. $p^2 + 6p - 16$ Coefficient of p^2 is unity. So, we add and subtract square of half of coefficient of p. $p^{2} + 6p - 16 = p^{2} + 6p + 3^{2} - 3^{2} - 16$ (Adding and subtracting 3²) $= (p + 3)^2 - 5^2$ (Completing the square) By using the formula $(a^2 - b^2) = (a+b)(a-b)$ = (p + 3 + 5) (p + 3 - 5)= (p + 8) (p - 2)5. $x^2 + 12x + 20$ Solution: We have, $x^{2} + 12x + 20$ Coefficient of x^2 is unity. So, we add and subtract square of half of coefficient of x. $x^{2} + 12x + 20 = x^{2} + 12x + 6^{2} - 6^{2} + 20$ (Adding and subtracting 6²) $= (x + 6)^2 - 4^2$ (Completing the square) By using the formula $(a^2 - b^2) = (a+b)(a-b)$ = (x + 6 + 4) (x + 6 - 4)= (x + 2) (x + 10)6. $a^2 - 14a - 51$ Solution: We have. $a^2 - 14a - 51$ Coefficient of a^2 is unity. So, we add and subtract square of half of coefficient of a. $a^{2} - 14a - 51 = a^{2} - 14a + 7^{2} - 7^{2} - 51$ (Adding and subtracting 7²) $= (a - 7)^{2} - 10^{2}$ (Completing the square) By using the formula $(a^{2} - b^{2}) = (a+b)$ (a-b) = (a - 7 + 10) (9 - 7 - 10)= (a - 17) (a + 3)7. $a^2 + 2a - 3$ Solution: We have,

 $a^2 + 2a - 3$

Coefficient of a^2 is unity. So, we add and subtract square of half of coefficient of a.

https://byjus.com

RD Sharma Solutions for Class 8 Maths Chapter 7 – Factorization

 $a^{2} + 2a - 3 = a^{2} + 2a + 1^{2} - 1^{2} - 3$ (Adding and subtracting 1^{2}) $= (a + 1)^2 - 2^2$ (Completing the square) By using the formula $(a^2 - b^2) = (a+b) (a-b)$ = (a + 1 + 2) (a + 1 - 2)= (a + 3) (a - 1)8. $4x^2 - 12x + 5$ Solution: We have, $4x^2 - 12x + 5$ $4(x^2 - 3x + 5/4)$ Coefficient of x^2 is unity. So, we add and subtract square of half of coefficient of x. $4(x^2 - 3x + 5/4) = 4 [x^2 - 3x + (3/2)^2 - (3/2)^2 + 5/4]$ (Adding and subtracting (3/2)²) = 4 [$(x - 3/2)^2 - 1^2$] (Completing the square) By using the formula $(a^2 - b^2) = (a+b)(a-b)$ = 4 (x - 3/2 + 1) (x - 3/2 - 1)= 4 (x - 1/2) (x - 5/2) (by taking LCM) = 4 [(2x-1)/2] [(2x-5)/2]= (2x - 5)(2x - 1)9. $v^2 - 7v + 12$ **Solution:** We have, $y^2 - 7y + 12$ Coefficient of y^2 is unity. So, we add and subtract square of half of coefficient of y. $y^{2} - 7y + 12 = y^{2} - 7y + (7/2)^{2} - (7/2)^{2} + 12$ [Adding and subtracting $(7/2)^{2}$] $= (y - 7/2)^2 - (7/2)^2$ (Completing the square) By using the formula $(a^2 - b^2) = (a+b)(a-b)$ = (y - (7/2 - 1/2)) (y - (7/2 + 1/2))= (v - 3) (v - 4)10. $z^2 - 4z - 12$ Solution: We have. $z^2 - 4z - 12$ Coefficient of z^2 is unity. So, we add and subtract square of half of coefficient of z. $z^{2} - 4z - 12 = z^{2} - 4z + 2^{2} - 2^{2} - 12$ [Adding and subtracting 2²] $= (z - 2)^2 - 4^2$ (Completing the square) By using the formula $(a^2 - b^2) = (a+b)$ (a-b)

https://byjus.com

RD Sharma Solutions for Class 8 Maths Chapter 7 – Factorization

$$= (z - 2 + 4) (z - 2 - 4)$$

= (z - 6) (z + 2)

