Question 15: In a Poisson distribution if $P\left(X=2\right)=P\left(X=3\right)$ then, the value of its parameter λ is:

(1) 3

(2) 0

(3) 6

(4) 2

Solution: (1)

Question 16: The surface area of the solid of revolution of the region bounded by $x^2 + y^2 = 4$, x = -2 and x = 2 about x-axis is:

 $(1) 64\pi$

 $(2) 32\pi$

 $(3) 8\pi$

(4) 16π

Solution: (4)

Question 17: If a + b + c = 0, |a| = 3, |b| = 4, |c| = 5 then, the angle between a and b is:

 $(1) 5\pi / 3$

 $(2) \pi / 2$

 $(3) \pi / 6$

(4) $2\pi / 3$

Solution: (2)

a + b + c = 0

|a| = 3

 $|\mathbf{b}| = 4$

|c| = 5

 $\theta = \cos^{-1}[(a.b)/|a||b|]$

a+b+c=0

a + b = -c

 $(a + b)^2 = (-c)^2$

 $|a|^2 + |b|^2 + 2ab = |c|^2$

 $3^2 + 4^2 + 2ab = 5^2$

9 + 16 + 2ab = 25

2ab = 0

ab = 0

 $\theta = \cos^{-1}[0/3.4]$

 $\theta = \cos^{-1}[0]$

$$\theta = \pi / 2$$

Question 18: The tangents at the end of any focal chord to the parabola $y^2 =$ 12x intersect on the line:

(1)
$$y + 3 = 0$$

(2)
$$y - 3 = 0$$

(1)
$$y + 3 = 0$$
 (2) $y - 3 = 0$ (3) $x - 3 = 0$ (4) $x + 3 = 0$

$$(4) x + 3 = 0$$

Solution: (4)

The tangent at the end of any focal chord to the parabola intersects on the directrix. The equation of the parabola is $y^2 = 12x$

$$y^2 = 4 (3) x$$

$$=> a = 3$$

The equation of the directrix is

$$x = -3$$

$$x + 3 = 0$$

Question 19: If A is a scalar matrix with scalar $k \neq 0$, of order 3. then A^{-1} is:

- (1)(1/k)I
- (2) kI
- (3) $[1/k^2]$ I (4) $[1/k^3]$ I

Solution: (1)

Question 20: The surface area of a sphere when the volume is increasing at the same rate as its radius, is:

- $(1) 4\pi$
- $(2) 4\pi / 3$
- (3) 1
- (4) $1/2\pi$

Solution: (3)

Let S be the surface area, V be the volume, r be the radius of a sphere at time t Given dv / dt = dr / dt

$$V = (4/3) \pi r^3$$

Surface area $S = 4\pi r^2$

$$V = (4/3) \pi r^3$$

$$dV / dt = (4 / 3) 3\pi^{2} (dr / dt)$$

 $dV / dt = 4\pi^{2} (dV / dt)$
 $1 = S$
 $=> S = 1$
Surface area = 1

PART - II

Answer any seven questions.

[7*2=14]

Question 21: To find the number of coins, in each category, write the suitable system of equations for the given situation:

"A bag contains 3 types of coins namely Re. 1, Rs. 2 and Rs. 5. There are 30 coins amounting to Rs. 100 in total."

Solution:

Let x, y and z be the number of coins respectively.

$$x + y + z = 30$$

$$x + 2y + 5z = 100$$

Question 22: If the two vectors 3i + 2j + 9k and i + mj + 3k are parallel, then prove that m = 2/3.

Solution:

$$a = 3i + 2j + 9k$$

$$b = i + mj + 3k$$

It is given that the two vectors are parallel.

$$a = \lambda b$$

$$3i + 2j + 9k = \lambda (i + mj + 3k)$$

$$3i + 2j + 9k = \lambda i + \lambda mj + \lambda 3k$$

Equating i, j, k vectors,

$$3i = \lambda i$$

$$\chi = 3$$

$$m\lambda = 2$$

$$m = 2 / 3$$

Question 23: Find the least positive integer n such that $[(1 + i) / (1 - i)]^n = 1$.

Solution:

$$\begin{split} & [(1+i) \, / \, (1-i)]^n \\ & 1 = [(1+i) \, / \, (1-i) \, * \, (1+i) \, / \, (1+i)]^n \\ & 1 = [(1-1+2i) \, / \, 2] \\ & i^n = 1 \\ & n = 4 \end{split}$$

Question 24: Draw the diagram for the given situation: "A comet is moving in a parabolic orbit around the sun which is at the focus of a parabola. When the comet is 80 million kms from the sun, the line segment from the sun to the comet makes an angle of π / 3 radians with the axis of the orbit."

Solution:

Question 25: Find the critical numbers of $f(x) = \sin x$.

f (x) = sinx
f'(x) = cosx
f'(x) = 0
cosx = 0
x = (2n + 1)
$$\pi$$
 / 2, n \in Z
x = π / 2, 3 π / 2,

Question 26: Write the domain and extent of the function $f(x) = x^3 + 1$.

Solution:

Domain: $(-\infty, \infty)$

Extent:

 $Vertical: (-\infty, \infty)$

Horizontal : $(-\infty, \infty)$

Question 27: Prove that $\int_{\pi/6}^{\pi/3} dx / [1 + \sqrt{\cot x}] = \int_{\pi/6}^{\pi/3} dx / [1 + \sqrt{\tan x}].$

Solution:

LHS =
$$\int_{\pi/6}^{\pi/3} dx / [1 + \sqrt{\cot x}]$$

= $\int_{\pi/6}^{\pi/3} dx / [1 + \sqrt{\cot [(\pi / 6) + (\pi / 3) - x}]]$
= $\int_{\pi/6}^{\pi/3} dx / [1 + \sqrt{\tan x}]$

Question 28: Show that the set of all non-zero rational numbers is not closed under addition.

Solution:

Let
$$G = Q - \{0\}$$

 \forall a, b \in G \Rightarrow a + b \notin G

So, G is not closed under addition.

Question 29: Prove that F (3) = $1 - e^{-9}$ if the probability density

$$f(x) = \begin{cases} 3e^{-3x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

function f (x) is defined as

F (x) = P (X \le x) =
$$\int_{-\infty}^{\infty} f(t) dt$$

F (3) = $\int_{0}^{3} 3e^{-3t} dt$

$$= 3 [e^{-3t} / -3]$$

$$= [-e^{-3t}]_0^3$$

$$= -[e^{-9} - 1]$$

$$= 1 - e^{-9}$$

Question 30: Verify Rolle's theorem for the function f(x) = |x-2| + |x-5| in [1, 6].

Solution:

$$f(x) = |x - 2| + |x - 5|$$
 in [1, 6]

f(x) is continuous on [1, 6]

f(x) is not differentiable on (1, 6)

Rolle's theorem is not satisfied.

PART - III

Answer any seven questions.

[7 * 3 = 21]

Question 31: Prove that ρ (A) + ρ (B) \neq ρ (A + B) by giving the suitable matrices A and B of order 3.

$$A = \begin{pmatrix} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1 \end{pmatrix} \Rightarrow \ell(A) = 2$$

$$B = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{pmatrix} \Rightarrow \ell(B) = 2$$

$$A + B = \begin{pmatrix} 2 & -1 & 2 \\ 0 & 1 & -2 \\ 8 & -1 & 2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 2 & -1 & 2 \\ 8 & -1 & 2 \end{pmatrix} R_3 - 3R_3 - 4R_3$$

$$\sim \begin{pmatrix} 2 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 3 & 10 \end{pmatrix}$$

$$\sim \begin{pmatrix} 2 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 16 \end{pmatrix} R_3 - 3R_3$$

$$\ell(A + B) = 3 \rightarrow 0$$
Atom $D \perp D = \ell(A + B) \neq \ell(A) + \ell(B)$

Question 32: Find the vectors of magnitude 6 which are perpendicular to both the vectors 4i - j + 3k and -2i + j - 2k.

$$a = 4i - j + 3k$$

$$b = -2i + j - 2k$$
Required vector = $\pm \mu$ (a x b) / |a x b|

a x b =
$$= -i + 2j + 2k$$
|a x b| = $\sqrt{1^2 + 2^2 + 2^2} = \sqrt{9} = 3$
Vector = $\pm \mu$ (a x b) / |a x b|
= \pm (- 2i + 4j + 4k)

Question 33: If n is a positive integer, prove that $[(1 + \sin\theta - i\cos\theta) / (1 + \sin\theta + i\cos\theta)]^n = \cos n (\pi / 2 - \theta) - i \sin n (\pi / 2 - \theta)$.

Solution:

Let
$$Z = \sin\theta - i \cos\theta$$

 $|Z| = 1$
 $(1/Z) = (\tan Z)$
 $(1/Z) = \sin\theta + i \cos\theta$
LHS = $[(1 + \sin\theta - i \cos\theta) / (1 + \sin\theta + i \cos\theta)]^n$
= $[(1 + Z) / (1 + (1/Z))]^n$
= $[((1 + Z) / (Z + 1) / Z)]^n$
= Z^n
= $(\sin\theta - i \cos\theta)^n$
= $[\cos(\pi/2 - \theta) - i \sin(\pi/2 - \theta)]^n$
= $\cos n(\pi/2 - \theta) - i \sin n(\pi/2 - \theta)$
= RHS

Question 34: Show that the tangent to a rectangular hyperbola terminated by its asymptotes is bisected at the point of contact.

Equation of the tangent is $x + yt^2 = 2ct$

Put
$$x = 0$$
, $y = 2c / t$, B $(0, 2c / t)$

Put
$$x = 0$$
, $x = 2ct$, A (2ct, 0)

Midpoint of AB =
$$(2ct / 2)$$
, $(2c / t / 2)$

$$= (ct, c/t)$$

(ct, c/t) is the point of contact.

Question 35: Show that the function $f(x) = \tan^{-1}(\sin x + \cos x), x > 0$ is strictly increasing in the interval $(0, \pi/4)$.

Solution:

$$f(x) = \tan^{-1}(\sin x + \cos x)$$

$$f'(x) = \{1/[1 + (\sin x + \cos x)^2]\} * (\cos x - \sin x)$$

=
$$(\cos x - \sin x) / [1 + \sin^2 x + \cos^2 x + 2 \sin x \cos x]$$

$$= (\cos x - \sin x) / [2 + 2 \sin x \cos x]$$

=
$$(\cos x - \sin x) / [2 + \sin 2x] \forall x \in (0, \pi / 4)$$

f (x) is strictly increasing in the interval $(0, \pi/4)$.

Question 36: If f (x, y) = 1 / $\sqrt{x^2 + y^2}$ then, prove that x $\partial f / \partial x + y \partial f / \partial y = -f$.

f (x, y) = 1 /
$$\sqrt{x^2 + y^2}$$

f (tx, ty) = 1 /
$$\sqrt{t^2x^2 + t^2y^2}$$

= 1 / t
$$\sqrt{x^2 + v^2}$$

$$= t^{-1} f(x, y)$$

f is a homogeneous function of degree 1.

By Euler's theorem,

$$x \partial f / \partial x + y \partial f / \partial y = - f$$

Question 37: Derive the formula for the volume of a cylinder with radius 'r' and height 'h' by using integration.

Solution:

Consider a triangle AOB with vertices O (0, 0), A (h, 0), B (h, r).

Equation of OB, y = (r / h) x

$$V = \pi \int_0^h y^2 dx$$

$$= \pi \int_0^h (r^2 / h^2) x^2$$

$$= \pi r^2 / h^2 [x^3 / 3]_0^h$$

$$= \pi r^2 / h^2 [h^3 / 3]$$

= $(1/3) \pi r^2 h$ cubic units

Question 38: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

р	q	p \ q	p∨q	$ \begin{array}{c} (\mathtt{p} \wedge \mathtt{q}) \rightarrow \\ \end{array} $
T	Т	Т	Т	T
T	F	F	T	T

F	Т	F	Т	Т
F	F	F	F	T

It is a tautology.

Question 39: A die is thrown 120 times and getting 1 or 5 is considered a success. Find the mean and variance of the number of successes.

Solution:

Question 40: Show that the solution of the differential equation $yx^3 dx + e^{-x} dy = 0$ is $(x^3 - 3x^2 + 6x - 6) e^x + \log y = c$.

Solution:

$$yx^{3} dx + e^{-x} dy = 0$$

 $e^{-x} dy = -yx^{3} dx$
 $dy / y = -x^{3} e^{x} dx$
 $\log y = -[x^{3} e^{x} - 3 x^{2} e^{x} + 6x e^{x} - 6e^{x}] + c$
 $\log y + e^{x} [x^{3} - 3 x^{2} + 6x - e^{x}] = c$

PART - IV

Answer all the questions.

[7*5=35]

Question 41: (a) For what values of μ the system of homogeneous equations x + y + 3z = 0; $4x + 3y + \mu z = 0$; 2x + y + 2z = 0 have:

- (i) only trivial solution
- (ii) infinitely many solutions

OR

(b) Prove by vector method that sin(A + B) = sinA cosB + cosA sinB.

Solution:

[a] The system of equations can be written as AX = B.

$$\begin{bmatrix} 1 & 1 & 3 \\ 4 & 3 & \mu \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$[A, B] = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 4 & 3 & \mu & 0 \\ 2 & 1 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & -1 & \mu - 12 & 0 \\ 0 & -1 & -4 & 0 \end{bmatrix} R_2 \rightarrow R_2 - 4R_1 \\ R_3 \rightarrow R_3 - 2R_1$$

$$\sim \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & -1 & \mu - 12 & 0 \\ 0 & 0 & 8 - \mu & 0 \end{bmatrix} R_3 \rightarrow R_3 - R_2$$

Case [i] Let $\mu \neq 8$

 ρ [A, B] = 3 and ρ [A] = 3

The given system is consistent and has a trivial solution.

$$x = 0, y = 0, z = 0$$

Case [ii]: Let $\mu = 8$

 ρ [A, B] = 2 and ρ [A] = 2 < 3 [is equal to number of unknowns]

The corresponding equations are x + y + 3z = 0; y + 4z = 0

Take z = k, y = -4k and x = k

The solutions set is (x, y, z) = (k, -4k, k), which are non-trivial.

The given system is consistent and has infinitely many non-trivial solutions.

[b] Let α and β be two unit vectors, and A and B be the angles made by them respectively with the x-axis.

$$\alpha = \cos Ai + \sin Aj$$
 and $\beta = \cos Bi + \sin Bj$
Now, $\alpha \cdot \beta = (\cos Ai + \sin Aj) (\cos Bi + \sin Bj)$
 $\Rightarrow \alpha\beta \cos (A - B) = \cos A \cos B + \sin A \sin B$ [: $\alpha = 1, \beta = 1$] ------(1)
Putting -B in place of B in (1):-
 $\cos (A - (-B)) = \cos A \cos (-B) + \sin A \sin (-B)$
 $\Rightarrow \cos (A + B) = \cos A \cos B - \sin A \sin B$
Similarly,
 $\alpha \times \beta = (\cos Ai + \sin Aj) \times (\cos Bi + \sin Bj)$
 $\Rightarrow \alpha \times \beta = \cos A \sin Bk - \sin A \cos Bk$
 $\Rightarrow \alpha\beta \sin (A - B) (-k) = (\sin A \cos B - \cos A \sin B) (-k)$
 $\Rightarrow \sin (A - B) = \sin A \cos B - \cos A \sin B$ -------(2)
Putting B = -B in (2),
 $\sin (A - (-B)) = \sin A \cos (-B) - \cos A \sin (-B)$
 $\Rightarrow \sin (A + B) = \sin A \cos B + \cos A \sin B$

Question 42: [a] Find the cartesian equation of the plane containing the line x - 2/2 = y - 2/3 = z - 1/-2 and passing through the point (-1, 1, -1).

OR

(b) Solve:
$$x^{11} - x^6 + x^5 - 1 = 0$$
.

[a]
$$(x_1, y_1, z_1) = (-1, 1, -1)$$

 $(x_2, y_2, z_2) = (2, 2, 1)$
 $(l_1, m_1, n_1) = (2, 3, -2)$
The equation of the plane is
$$\begin{vmatrix} x+1 & y-1 & z+1 \\ 3 & 1 & 2 \end{vmatrix} = 0$$

$$\begin{vmatrix} x+1 & y-1 & z+1 \\ 3 & 1 & 2 \\ 2 & 3 & -2 \end{vmatrix} = 0$$

$$0 = (x+1)(-2-6) - (y-1)(-6-4) + (z+1)(9-2)$$

$$0 = (x+1)(-8) - (y-1)(-10) + (z+1)(7)$$

$$0 = -8x - 8 + 10y - 10 + 7z + 7$$

 $8x + 8 - 10y + 10 - 7z - 7 = 0$
 $8x - 10y - 7z + 11 = 0$

OR

[b]
$$x^{11} - x^6 + x^5 - 1 = 0$$

 $x^6 [x^5 - 1] [x^5 - 1] = 0$
 $x = (-1)^{\frac{1}{6}} = (cis \pi)^{\frac{1}{6}}$
 $= (cis (2k\pi + \pi))^{\frac{1}{6}} \quad k = 0, 1, 2, 3, 4, 5$
 $x = cis \pi / 6$, $cis 3\pi / 6$, $cis 5\pi / 6$, $cis 7\pi / 6$, $cis 9\pi / 6$, $cis 11\pi / 6$
 $x = (cis 0)^{\frac{1}{6}}$
 $= (cis (2k\pi))^{\frac{1}{6}}$
 $= cis 2k\pi / 5$, $k = 0, 1, 2, 3, 4, 5$
 $x = 0$, $cis 2\pi / 5$, $cis 4\pi / 5$, $cis 6\pi / 5$, $cis 8\pi / 5$.

Question 43: [a] Show that the sum of the focal distances of any point on an ellipse is equal to the length of the major axis and also prove that the locus of a point which moves so that the sum of its distances from (3, 0) and (-3, 0) is 9, is $x^2/(81/4) + y^2/(45/4) = 1$.

OR

(b) Prove that the area of the largest rectangle that can be inscribed in a circle of radius 'r' is $2r^2$.

Solution:

[a]

$$F_1P + F_2P = 2a$$

$$x = a / e$$
, $x = -a / e$
 $F_1P / PM = e$
 $F_2P / PM = e$
 $F_1P = e PM$
 $F_2P = e PM$
 $F_1P + F_2P = e (PM + PM)$
 $= e (MM')$
 $= e (2a / e)$
 $= 2a$
 $= length of major axis$
 $2a = 9$
 $a = 9 / 2$

ae = 3

$$b^2 = a^2 - (ae)^2$$

= (81 / 4) - 9

= 45 / 4

The equation is $x^2 / (81 / 4) + y^2 / (45 / 4) = 1$.

OR

[b]
$$x = 2r \cos \theta$$

 $y = 2r \sin \theta$
Area of rectangle = $2x.2y$
A $(\theta) = 2r \cos \theta$. $2r \sin \theta$
d $(A(\theta)) / d\theta = 4r^2 \cos 2\theta$
d $(A(\theta)) / d\theta = 0$ then $\theta = \pi / 4$
A '' $(\theta) = -8r^2 \sin 2\theta < 0$ for $\theta = \pi / 4$
So A is maximum for $\theta = \pi / 4$
 $X = y = \sqrt{2r}$,
Required area = $x.y$
= $2r. 2r$
= $2r^2$

Question 44: [a] A missile fired from ground level rises x metres vertically upwards in t seconds and $x = 100t - (25/2)t^2$.

Find:

- (i) the initial velocity of the missile
- (ii) the time when the height of the missile is a maximum
- (iii) the maximum height reached
- (iv) the velocity with which the missile strikes the ground

OR

(b) Find the centre, foci and vertices of the hyperbola $16x^2 - 9y^2 - 32x - 18y + 151 = 0$ and draw the diagram.

Solution:

[a]
$$x = 100t - (25 / 2)t^2$$

(i) To find the initial velocity of the missile.

So,
$$t = 0$$

 $v = dx / dt = 100 - (25 / 2) 2t$
 $v = 100 - 0$
 $= 100$

(ii) The time when the height of the missile is a maximum is given by v = 0.

$$100 - 25t = 0$$

t = 4 seconds

(iii) The maximum height reached when t = 4 seconds

$$x = 100 (4) - (25 / 2)16x$$

= 200 meters

(iv) velocity if t = 4 + 4 = 8 seconds

$$v = 100 - 25(8)$$

= -100 m/sec

[b] equation
$$(y + 1)^2 / 16 - (x - 1)^2 / 9 = 1$$

 $a^2 = 16$

$$b^2 = 9$$

$$e = 5 / 4$$

Vertices:
$$(1, 3), (1, -4)$$

Question 45: [a] The mean score of 1000 students for an examination is 34 and the standard deviation is 16. Determine the limit of the marks of the central 70% of the candidates by assuming the distribution is normal. P [0 < Z < 1.04] = 0.35

OR

(b) Compute the area between the curve y = sinx and y = cosx and the lines x = 0 and $x = \pi$.

Solution:

[a] a)
$$P(Z_1 < Z < Z_2) = 70\%$$

$$P(Z_1 < Z < Z_2) = 0.70$$

$$P(Z_1 < Z < 0) = 0.35$$

$$P(0 < Z < Z_2) = 0.35$$

 Z_1 and Z_2 lie on the left and right side of the normal curve.

$$Z_1 = -1.04$$
 and $Z_2 = 1.04$

$$Z = [x - \mu] / \sigma$$

$$= [x - 34] / 16$$

$$= -1.04$$

$$X = 17.36$$

$$Z = x - 34 / 16 = 1.04$$

$$x = 50.64$$

70% of the students' score lies between 17.36 and 50.64.

[b]
$$y = \sin x$$

 $y = \cos x$
Then $\sin x = \cos x$
 $\rightarrow x = \pi / 4 \in (0, \pi)$
Required area = $\int_0^{\pi/4} (\cos x - \sin x) dx + \int_{\pi/4}^{\pi} (\sin x - \cos x) dx$
= $2\sqrt{2}$ square units

Question 46: [a] If $w = x + 2y + z^2$ and $x = \cos t$; $y = \sin t$; z = t find dw / dt by using chain rule. Also find dw / dt by substitution of x, y and z in w and hence verify the result.

OR

(b) A cup of tea at temperature 100° C is placed in a room whose temperature is 15° C and it cools to 60° C in 5 minutes. Find its temperature after a further interval of 5 minutes.

Solution:

[a]
$$dw / dt = (\partial w / \partial x) (dx / dt) + (\partial w / \partial y) (dy / dt) + (\partial w / \partial z) (dz / dt)$$

= - sint + 2 cost + 2t (1)
w = cost + 2 sint + t²
 $dw / dt = -$ sint + 2 cost + 2t (2)
b) $dT / dt = k (T - s)$, $s = 15$
 $T = s + ce^{kt}$ (1)
t = 0 then T = 100
(1) => c = 85
t = 5, T = 60 then $e^{5k} = 45 / 85$
t = 10, then T = ?
T = 15 + 83 $e^{10k} = 38.82$

Question 47: [a] State all the five properties of groups.

(b) Prove that the solution of the differential equation : $(5D^2 - 8D - 4)y = 5e^{(-\frac{7}{5}x)} + 2e^x + 3$ is $y = Ae^{2x} + Be^{(-\frac{7}{5}x)} - (5/12) xe^{(-\frac{7}{5}x)} - (2/7) e^x - (3/4)$.

- [a]
- (i) Identity element of group is unique
- (ii) Inverse of each element of group is unique
- (iii) Reversal law
- (iv) Cancellation law
- $(v)[a^{-1}] 1 = a$

b) C.F =
$$Ae^{2x} + Be^{(-2/5)x}$$

$$P.I_1 = (-5 / 12) \times e^{(-2/5)x}$$

$$P.I_2 = (-2/7) e^x$$

$$P.I_3 = -3/4$$

General solution
$$y = C.F + P.I_1 + P.I_2 + P.I_3$$

$$= Ae^{2x} + Be^{(-2/5)x} + (-5/12) xe^{(-2/5)x} + (-2/7) e^{x} (-3/4)$$