Strictly Confidential: (For Internal and Restricted use only) Senior Secondary School Examination September-2020 Marking Scheme – SUBJECT: PHYSICS THEORY (042) CODE: 55/C/1

General Instructions: -

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- 2. "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under IPC."
- 3. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them. In class-X, while evaluating two competency based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, marks should be awarded.
- 4. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 5. Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer 'X' be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 6. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 7. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 8. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 9. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 10. A full scale of marks 70 (example 0-70 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 11. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
- 12. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply.

- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark
 is correctly and clearly indicated. It should merely be a line. Same is with the X for
 incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 13. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- 14. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 15. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 16. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 17. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

	Marking Scheme: Physics (042)					
	Code :55/C/1					
Q.No.	VALUE POINTS/ EXPECTED ANSWERS	Marks	Total Marks			
	SECTION- A					
1.	(C) Remains unchanged	1	1			
2.	$(C)\frac{F}{2}$	1	1			
3.	(B) evr	1	1			
4.	$(C) \left(\frac{r_1}{r_2}\right)^2$	1	1			
5.	(C) Perpendicular to each other and in the same phase.	1	1			
6.	$(A) + \frac{d}{4}$	1	1			
7.	(C) 1	1	1			
8.	(C) A neutron is converted into a proton and the created electron is ejected from the nucleus.	1	1			
9.	(C) III	1	1			
10.	(D) Number of both the free electrons and holes increases equally.	1	1			
11.	Lower	1	1			
12.	$\frac{h}{\pi}$ OR	1	1			
	$9 \times 10^{14} \text{J}$					
13.	Red	1	1			
14.	2π	1	1			
15.	90°	1	1			
16.	X	1	1			
	Alternatively					
	$Slope = \frac{1}{R}$					
	$R = \rho \frac{l}{A}$					
	$R_x > R_y$					
	(Award half mark of this question, if a student writes the correct answer in terms of					
	Resistance.)					

15	F. M. (277-) A - (2)	1	4
17.	$[ML^2T^{-2}A^{-2}]$	1	1
18.			
	E V Potential Potential	1	
	Resistance R		
	Alternatively		
	V=E-Ir		
	$V=E - \left(\frac{E}{R+r}\right)r$		
	(Award half mark of this question to the student if he/she write just formula.)		1
19.	Virtual	1	1
	(Note: Award half mark if a child shows that focal length will become negative using		
	Lens maker formula and does not conclude about nature of image.)		
20.	X is α-particle	1	1
	(Note: Award half mark when a child finds out the correct atomic number and mass		
	number of D ₂ i.e 70 & 176)		
	OR		
	curves 1 & 2		
	SECTION- B		
21.			
	(a) Depiction of equipotential surfaces 1		
	(b) Finding the amount of work done 1		
	(a)		

	(b) $W=q_0$ Δ V As a small test charge q_0 is moving along x-axis which is equipotential line for a given system, therefore $\Delta V=0$ Hence $W=0$	1 1/2 1/2	2
22.	(a) Sequence of color bands (b) Two properties of wire (c) \frac{1}{2} + \frac{1}{2} (a) Yellow, Violet, Orange and Silver (Note: if student does not write silver award half mark of this part.) (b) (1) Low temperature coefficient of Resistivity. (2) High Resistivity	1 1/2 1/2	2
23.	$(a) \ Calculation \ of \ Impedance \ of \ Circuit $	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂	2

24.		
Reason for Infrared Radiation referred as heat waves 1	\neg	
Name the Radiation which lies		
(a) Shorter Wavelength side $\frac{1}{2}$		
(b) Longer Wavelength side $\frac{1}{2}$		
Water molecules present in most material readily absorb IR waves After Absorption	1	
thermal motion increases. Due to which, they heat up & heat their surroundings.		
(a) Visible	1/2	
(b) Microwave	1/2	2
25.		2
Formula for half life $\frac{1}{2}$		
Calculation of half life 1		
Calculation of Critical mass $\frac{1}{2}$		
	_	
$N = N_o \left(\frac{1}{2}\right)^n$ $\frac{1}{16} N_o = N_o \left(\frac{1}{2}\right)^n$	1/2	
$\frac{1}{16} N_{\rm o} = N_{\rm o} \left(\frac{1}{2}\right)^n$		
n=4	1/2	
$t=n \times T_{1/2}$		
$T_{1/2} = \frac{t}{n} = \frac{4}{4} = 1 \text{ day}$	1/2	
$N=N_o\left(\frac{1}{2}\right)^n=N_o\left(\frac{1}{2}\right)^{\frac{t}{T_1}}$		
$4 = N_o \left(\frac{1}{2}\right)^o$	1/2	
$N_o = 256 \text{ g}$, 2	
Alternative Method		
$N=N_0 e^{-\lambda t}$	1/2	
$\frac{1}{16} N_0 = N_0 e^{-\lambda 4}$		
$16 = e^{4\lambda}$ $4 \log_e 2 = 4 \lambda$		
$4x \ 2.303 \ x \ 0.3010 = 4 \ \lambda$		
$\lambda = 0.693$ per day	1/2	
Half life		

	0.602		
	$T_{1/2} = \frac{0.693}{\lambda} = \frac{0.693}{0.693} = 1 \text{ day}$	1/2	
	$4 = N_0 e^{-\lambda t}$	/2	
	$N_o = 256 g$	$^{1}/_{2}$	
		, 2	
	(Note: Give full credit of this part, if student substitutes values correctly		
	and is not able to calculate final answer.)		
	OR		
	Formula ¹ / ₂		
	Conversion of kinetic energy in Joule $\frac{1}{2}$		
	<u>-</u>		
	Finding the distance of closest approach 1		
		4.	
	$d = \frac{q_1 q_2}{4\pi\epsilon_0 K}$	$\frac{1}{2}$	
	$4\pi\epsilon_0 K$		
	5 10 14 17	1/2	
	kinetic energy= 5.12 MeV = $5.12 \times 1.6 \times 10^{-13} \text{ J}$, 2	
	$= 3.12 \times 1.0 \times 10^{-13} \text{ J}$ $= 8.192 \times 10^{-13} \text{ J}$		
	- 0.172×10 J		
	$a_1a_2 \qquad 9\times10^9\times2e\times79e$	1/2	
	$d = \frac{q_1 q_2}{4\pi\epsilon_0 K} = \frac{9 \times 10^9 \times 2e \times 79e}{8.192 \times 10^{-13}} \text{ m}$	/ 2	
	$= 4.443 \times 10^{-14} \text{ m}$		
	$=44.4 \times 10^{-15} \mathrm{m}$	$^{1}/_{2}$	
			2
26.			
	Binding energy curve 1		
	Explanation of middle flat portion of the curve 1		
	(New) to see the second of the		
	S S S S S S S S S S S S S S S S S S S	1	
	6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	8 4 T		
	9 0 3H		
	Supprise 2		
	m 0 50 100 150 200 250		
	Mass number (A)		
	Note: please don't deduct marks if student does not mark all the nuclei on the curve.		
	The nuclei lying at the middle flat portion are more stable because their binding energy		
		1	

per nucleon is large and shows more stability.	1	2
Reason for part (a) 1		
Reason of part (b) 1		
(a) Zener diode is fabricated by heavy doping of both p-side, and n-side of the junction.		
Due to this, depletion region formed is very thin and the electric field of the junction	1	
is extremely high.		
(b) It is easier to observe the change in the current with change in the light intensity, if reverse bias is applied.	1	
OR		
Circuit Diagram $\frac{1}{2}$		
Working of p-n junction 1		
I-V Characteristics $\frac{1}{2}$		
Milliammeter (mA) Switch	1/2	
In the forward bias the width of depletion layer decreases and barrier height is reduced.		
It supports the movement of majority charge carriers across the junction.		
As soon as supply voltage exceeds barrier potential instantaneously current begins to	1	
flow through junction and increases exponentially with forward biasing voltage.	1	
(Note: Accept any other relevant explanation for working)		
I-V characteristics		
100— 80— 60— 40—	1/2	
0 20 0.2 0.4 0.6 0.8 1.0 V (V)		2
SECTION- C		

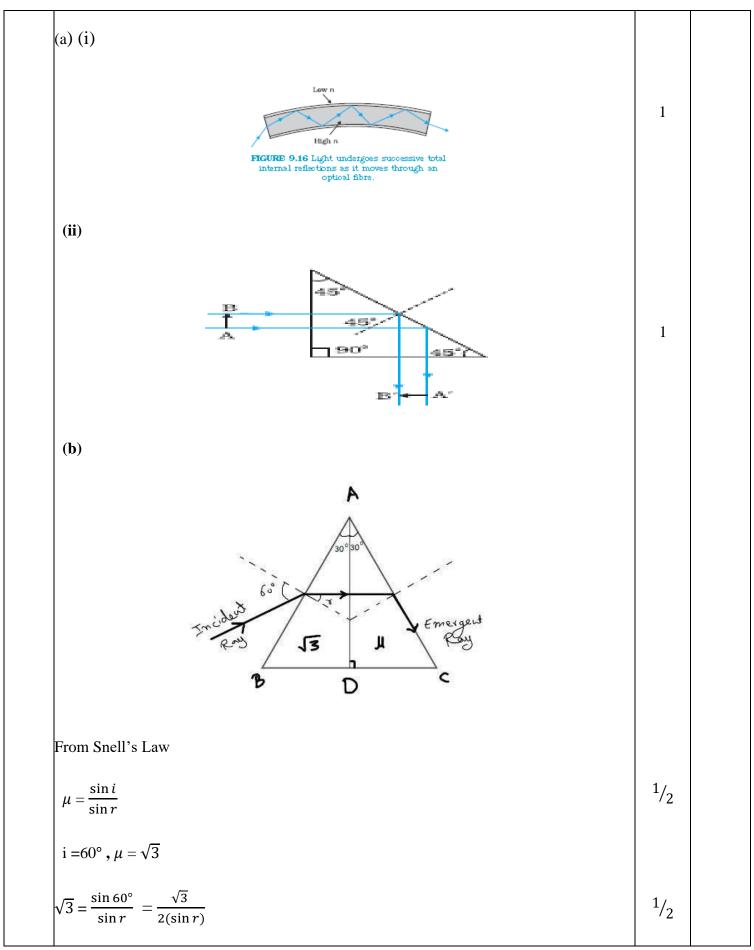
28.			
	Explanation of part (a) 1		
	Explanation of part (b) 1		
	Explanation of part (c) 1		
	(a) Electric field increases	1	
	$E = \frac{V}{l} = \frac{IR}{l} = \frac{I\rho l}{Al} = \frac{I\rho}{A}$		
	As area (A) decreases from end A to end B, E increases	1	
	(b) current density increases		
	$J = \frac{1}{A}$		
	As area (A) decreases, current density (J) increases	1	
	(c) Mobility of electron remain same		
	$\mu = \frac{V_d}{E} = \frac{eE\tau}{mE} = \frac{e\tau}{m}$		
	Since 'e', ' τ ' and 'm' are constant therefore (μ) is constant.		
	(Note: please do not deduct the marks if a student does not write the explanation and		3
	just writes the answers.)		
29.			
	(a) Labeled diagram1Explanation of Working1(b) Explanation of motion on ions1		
	Magnetic field out of the paper Rxit Port Charged particle D: OSCILLATOR	1	
	Working: The charged particle is allowed to move under the influence of crossed electric		
	and magnetic field, the magnetic field provides the circular path to the particle and		
	Rotate it inside two semi circular discs, when it jumps from one disc to another disc		
	particle is accelerated by the electric field and each time the acceleration increases the	1	
	energy of the particle.		
	(b) Ions will not get accelerated.	1	3
30.			
L			

	(a) Working Principle of ac generator 1		
	Derivation of expression for induced emf		
	(b) Function of Slip Rings 1		
	(a) It is based upon the principle of electromagnetic induction.	1	
	Magnetic Flux $\Phi = NBA \cos \theta$	1	
	$\Phi = \text{NBA cos } \omega t$	1/2	
	According to Faradays law		
	$\operatorname{Emf} e = \frac{-d\Phi}{dt} = \frac{-d(\operatorname{NBA}\cos\omega t)}{dt}$		
	$e = NBA \omega \sin \omega t$	1/2	
	(b) it helps current to change its direction after every half rotation.		
	OR	1	
	Explanation of parts (a),(b) & (c) (1+1+1)		
	(a) As power P=V I, In step-up voltage transformer output voltage (V) is more than the		
		1	
	input voltage. Hence output current is less than the input current.	1	
	(b) To minimize the eddy currents.	1	
	(c) Input power is more than the output power because in actual transformer small	1	
	energy loses occur due to flux leakage, resistance of winding, eddy current and hysteresis etc.		3
31.			
	(a) Finding the focal length of mirror $1 \frac{1}{2}$		
	(b) Calculation of displacement and direction $1 \frac{1}{2}$		
	(a) For virtual image m=+2		
	$m = 2 = \frac{-v}{u}$	1/2	
	u= -10cm		
	v = -2u = 20 cm		
	Using mirror formula		
	$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	1/2	
	$\frac{1}{f} = \frac{1}{20} - \frac{1}{10}$	1.	
	f = -20 cm	1/2	

	4) P 1 '		
	(b) For real image		
	m=-2		
	$m=-2=\frac{-v}{u}$	1/2	
	v=2u		
	$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$		
	$\frac{1}{-20} = \frac{1}{2u} + \frac{1}{u}$		
	2u= - 60		
	u= -30 cm	1/2	
	\therefore displacement of object = $30 - 10$		
	= 20 cm Away from mirror	1/2	
		. 2	3
32.			
	(a) Ray Diagram $1\frac{1}{2}$		
	(b) Expression of magnifying power 1 ½ Ray diagram		
	A B D D D D D D D D D D D D D D D D D D	11/2	
	Note: deduct half mark, if a student does not mark the direction of propagation of the		
	rays)		
	Expression for magnification		
	$m_0 = \frac{h'}{h} = \frac{L}{fo}$	1/2	
	where we have used the result		
	$\tan \beta = (\frac{h}{fo}) = \frac{h'}{L}$		
	$m_{\rm e} = (1 + \frac{\rm D}{\rm fe})$	1/2	
	Magnifying power of microscope at near point.		

	m – m m		
	$m = m_0 m_e$ L D.	1/2	
	$m = \frac{L}{fo} \left(1 + \frac{D}{fe} \right)$	/ 2	3
33.			
	(a) Calculation of kinetic energy 2		
	(b) Effect of intensity of light 1		
	(b) Effect of intensity of fight		
	(a) $E_{\text{max}} = \frac{hc}{\lambda} - \phi_0$	1/2	
	$= \left(\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{2000 \times 10^{-10} \times 1.6 \times 10^{-19}} - 4.2\right) \text{ eV}$	1/2	
	$=\left(\frac{19.89}{3}-4.2\right) \text{ eV}$	1/2	
	= (6.22 - 4.2) eV		
		$^{1}/_{2}$	
	= 2.02 eV	1	3
	(b) No effect	-	
34.			
	Circuit Diagram 1 Working of full wave rectifier 1		
	Draw input and output waveform 1		
	Centre-Tap		
	Transformer Diada 1(D)		
	Diode 1(D _i)	1	
	Centre A X		
	S E Centre X		
	Tap B		
	Diode $2(D_g)$ $\geq K_L$ Output		
	Y Y		
	SER SER		
	Working: The input voltage to A with respect to the centre tap at any instant is positive,	1/2	
	At that instant voltage at B being out of phase will be negative. So diode D ₁ gets forward	/2	
	biased and conducts while D ₂ being reversed biased is not conducting. Hence during this		
	positive half cycle we get an output current.		
	In the course of the ac cycle when voltage at A becomes negative with respect to centre	1/2	
l			l

tap, the voltage at B would be positive. In this part of the cycle diode D ₁ would not		
conduct but D ₂ conduct and gives an output current.		
Waveform at A		
Ū, t		
(i) Wave		
	1/2	
Waveform at B	/2	
(ii) Maave		
Note: Please don't deduct mark, if a student draws only one input		
and the same of th		
Due to Due to Due to		
	1/2	
across of D1/ D2/ D1/ D2/		
the distribution of the di		3
n t		
SECTION- D		
35. (a) Derivation of expression for Capacitance 2		
(b) Expression for the Force experienced 1		
(c) Calculation of total charge stored 2		
(a) Electric field believes the plates of parallel plate capacitor.		
$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{A\epsilon_0}$	1/2	
We know $V = Ed = \frac{\sigma}{A \in 0} d$	1/2	
As capautance $C = \frac{Q}{V}$	1/2	
$C = \frac{\epsilon_{0A}}{d}$	1/2	
	/2	
(b) Electric Field due to the positive plate on the negative plate	1/2	
$E = \frac{\sigma}{2\epsilon_0} = \frac{\sigma}{2A\epsilon_0}$	/ 2	
Hence Force experienced by negative plate due to positive plate		


$F = -qE = -q \times \frac{q}{2A \in_0} = -\frac{q^2}{2A \in_0}$	1/2	
-ve sign shows attractive force.	/ 2	
(c) C ₂ , C ₃ and C ₄ are connected in series.	4.	
$\frac{1}{Cs} = \frac{1}{C_2} + \frac{1}{C_3} + \frac{1}{C_4} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12}$	1/2	
$Cs C_2 C_3 C_4 12 12 12$ $Cs = 4 \mu F$		
Equivalent capacitance of the Network		
$C = C_s + C_4$		
$=4\mu F + 12 \mu F$	1,	
$= 16 \mu \text{F}$	1/2	
Total charge Q=CV	1/2	
$=16 \times 10^{-16} \times 100$	1,	
Q=1600 μC	1/2	
OR		
a) Principle of Wheatstone Bridge 1		
Circuit Diagram 1		
Determination of specific resistance 1		
b) Calculation of potential difference between A & C 2		
(a) Principle: If four resistors R_1 , R_2 , R_3 and R_4 are connected in the four	1	
sides of a quadrilateral. The galvanometer is connected in one of the diagonal and battery is connected across another diagonal then the conductors.	1	
R_1 R_2		
$\frac{R_1}{R_2} = \frac{R_3}{R_4}$ provides no current flows through the galvanometer		
R S		
B		
A L G 100 - L C	1	
Metre scale		
(·)		
ε K,		
For analific registance when no assessed flows in activations		
For specific resistance when no current flows in galvanometer		

$\frac{R}{S} = \frac{R_{AD}}{R_{DC}} \qquad \dots \dots$		
$\frac{R_{AD}}{R_{DC}} = \frac{l}{100 - l} \qquad \dots \dots 2$		
From equation 1 & 2		
$\frac{R}{S} = \frac{l}{100 - l}$		
	1/2	
$R = S\left(\frac{l}{100 - l}\right)$		
Resistivity of the wire	1/2	
$RA = \pi r^2$, 2	
$\rho = \frac{RA}{L} = R \frac{\pi r^2}{L}$		
where $L = Length$ of unknown resistance wire		
r = radius of unknown resistance wire		
(b)		
A I-I, 1 152 B		
A = I - I B		
*		
エ, ノニーエ,		
I A 42 m		
D 8V 2Q I C		
In loop ACDA		
$4I_{1+}2I=8$	1/2	
$2I_1 + I = 4 \qquad \dots \dots$		
(1)		
In loop ABCA		
$(I-I_1) \times 1 - 4I_1 = -2$		
$I - I_1 - 4I_1 = -2$		
$I-5I_1=-2$		
$5I_1 - I = 2$ (2)	1/2	
(2)		
By adding Equation (1) & (2)		

	$5\mathbf{I}_1 - \mathbf{I} = 2$		
	$\underline{2I_1 + I = 4}$		
	$7I_1 = 6$	1 .	
	$I_1 = \frac{6}{7}A$	$^{1}/_{2}$	
	$V = I_1 R = \frac{6}{3} \times 4$		
	$V = I_1 R = \frac{6}{7} \times 4$ $V = \frac{24}{7} \text{ volt}$	1/2	
	$V=\frac{1}{7}$ volt	7	5
36.			
30.	(1) Discourse of manifest will be be seen as the		
	(a) Diagram of moving coil galvanometer 1 Working		
	Working 1		
	Justification for using radial magnetic field $\frac{1}{2}$		
	(b) Calculation of Resistance $2\frac{1}{2}$		
	Pointer Permanent magnet Coil Sp. Proof Soft-tron core Uniform radial magnetic field	1	
	Working: when a current flow through the coil, a torque acts on it.		
	au=NIAB		
,	Where symbols have their usual meaning. since the field is radial by design, we have		
1	taken $\sin\theta = 1$ in the above expression for torque. The magnetic torque NIAB tends to		
]	otate the coil. A spring provide a counter torque kØ that balances the magnetic torque		
	NIAB; resulting in a steady angular deflection Ø. In equilibrium		
	k Ø= NIAB	$^{1}/_{2}$	
	Where k is the tensional constant of the spring. The deflection \emptyset is indicated on the scale		
1	by a pointer attached to the spring. We have		
	J 1		

$\emptyset = (\frac{NAB}{k})I$	
$\mathcal{V} = (\frac{1}{k})1$	1/2
To calibrate the scale of galvanometer/to make scale linear	1/2
(b) $R = \frac{V}{I_g} - G$, 2
$R_1 = \frac{V}{l_g} - G = 2000 = \frac{V}{l_g} - G $ (1)	1/2
$R_2 = \frac{V}{I_g} - G = 5000 = \frac{2V}{I_g} - G$ (2)	1/2
$R = \frac{V}{2I_g} - G \qquad \dots (3)$	1/2
from equation 1 & 2	
$3000 = \frac{V}{I_g}$	
From equation (1)	
2000=3000-G	
$G=1000 \Omega$	1/2
$R = \frac{3000}{2} - 1000$, 2
R= 1500 – 1000	
$R=500 \Omega$	1/2
OR	
(a) (i) Expression for emf induced and polarity $1 \frac{1}{2} + \frac{1}{2}$	
(ii) Magnitude and direction $\frac{1}{2} + \frac{1}{2}$	
(b) Calculation of mutual inductance 2	
(a) (i) Magnetic flux linked with the loop at any instant of time is	
$\emptyset_B = B(lx)$	1/2
$\left \frac{d\phi_B}{dt} \right = Bl \frac{dx}{dt}$	
$\left \frac{d\phi_B}{dt}\right = Bl_v \qquad \qquad \because \ (\frac{dx}{dt} = v)$	1/2
According to Faradays Law of Electromagnetic induction	
$\left \frac{d\phi_B}{dt} \right = e$	
Hence $e=Blv$	1,
Alternative Method	1/2
(i) When rod moves outwards, according to Lorentz magnetic force	

$\overrightarrow{F_m} = q(\overrightarrow{V} \times \overrightarrow{B})$	1/2	
Free electrons inside the conductor experience force towards the end X. the positive		
charge moves towards end y of the conductor due to accumulation of charges emf is		
developed across the conductor. Consider a charge 'q' at the end X, work done by		
magnetic field in moving it through the length 'l' of the conductor is		
$W=F_m l$	1/2	
$= (qvB \sin\theta) l$		
$W = qvBl \ (: \theta = 90^{\circ})$		
According to definition of emf		
$e = \frac{W}{a} = vBl$		
$e - \frac{1}{q} - vBt$	1/2	
Hence, emf e= vBl	/2	
The end X of coil be at lower potential and Y will be at higher potential.	1/2	
(ii) $I = \frac{e}{r}$		
	4	
$I = \frac{Bvl}{r}$	1/2	
Direction of induced current is from end X to end Y		
Direction of induced current is from clid X to clid Y	1/2	
(b) r_2		
$M = \frac{\mu_0 \pi r_1}{2r_2}$	1/2	
4-110-7-10-4		
$= \frac{4\pi \times 10^{-7} \times \pi \times 0.5^{2} \times 10^{-4}}{2 \times 11 \times 10^{-2}} \text{ H}$	1/2	
	1/2	
$= 2 \times (0.25) \times 10^{-9} \times \frac{\pi^2}{11} H$		
$= 4.49 \times 10^{-10} \text{ H}$	1/2	
(a) (i) Ray diagram of TIR in optical fiber 1		
(ii) Ray diagram for TIR in prism		
(b) Calculation for value of μ 3	_	

$\sin r = \frac{1}{2} = \sin 30^{\circ}$
r= 30°
So, ray will go perpendicular to AD For II nd prism

 $^{1}/_{2}$

$$i_c = 30^{\circ}$$

 $^{1}/_{2}$

$$i_c = 30^{\circ}$$

$$\therefore \sin i_c = \frac{1}{\mu}$$

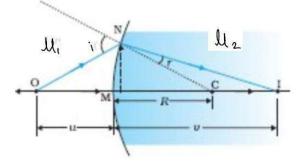
 $^{1}/_{2}$

$$\sin 30^{\circ} = \frac{1}{\mu}$$

$$\mu = 2$$

 $^{1}/_{2}$

OR


(a) Derivation of the relation between $\ \mu_{1}$, $\ \mu_{2}$ and R 3

(b) Find the intensity of light transmitted by $P_1 \mbox{ and } P_2$

2

(a)

 $^{1}/_{2}$

 $^{1}/_{2}$

$$\tan \angle NOM = \frac{MN}{OM}$$

$$\tan \angle NCM = \frac{MN}{MC}$$

$$\tan \angle NIM = \frac{MN}{MI}$$

Now, for Δ NOC, L_i is the exterior angle

Therefore, $\angle_i = \angle NOM + \angle NCM$	1 ,	
$\angle \mathbf{i} = \frac{MN}{OM} + \frac{MN}{MC} \qquad \dots (1)$	¹ / ₂	
Similarly,		
$r = \angle NCM - \angle NIM$		
i.e $r = \frac{MN}{MC} - \frac{MN}{MI}$ (2)	1/2	
By snells law		
$\mu_1 \sin i = \mu_2 \sin r$		
For small angle		
μ_1 i = μ_2 r		
Substituting i and r from equation 1 & 2, we get		
$\frac{\mu_1}{OM} + \frac{\mu_2}{MI} = \frac{\mu_2 - \mu_1}{MC} \qquad(3)$	1/2	
Here		
OM=-u, $MI=+v$, $MC=+R$		
On substituting in equation 3, we get		
$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$	1/2	
Note: Give full credit of this part, if a student takes medium of μ_1 as denser and μ_2 as rarer		
(b) According to Malus's law, intensity of light transmitted from P ₂	1.	
$I_{p_2} = I_o \cos^2 \theta$	1/2	
Where $I_o = \frac{2}{2} \text{ mW} = 1 \text{mW}$	1/2	

Here $\theta = 60^{\circ}$		
$I_{p_2} = (1 \text{ mW}) \cos^2 60^\circ$	1/2	
$I_{p_2} = \frac{1}{4} \mathrm{mW} = 0.25 \mathrm{mW}$	1/2	5