Strictly Confidential: (For Internal and Restricted use only)
 Senior Secondary School Examination September-2020
 Marking Scheme - SUBJECT: PHYSICS THEORY (042)
 CODE: 55/C/2

General Instructions: -

1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2. "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under IPC."
3. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them. In class-X, while evaluating two competency based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, marks should be awarded.
4. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
5. Evaluators will mark $(\sqrt{ })$ wherever answer is correct. For wrong answer ' X ' be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
6. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
7. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
8. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
9. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
10. A full scale of marks 70 (example 0-70 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
11. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
12. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on a reply.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

13. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
14. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
15. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
16. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
17. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

Marking Scheme: Physics (042)			
Code :55/C/2			
Q.No.	VALUE POINTS/ EXPECTED ANSWERS	Marks	Total Marks
SECTION- A			
1.	(D) change on plates will remain the same	1	1
2.	(C) $\frac{F}{2}$	1	1
3.	(A) $\frac{E}{B}$	1	1
4.	(C) $\left(\frac{r_{1}}{r_{2}}\right)^{2}$	1	1
5.	(A) yellow, orange and red	1	1
6.	(D) Number of both the free electrons and holes increases equally.	1	1
7.	(C) III	1	1
8.	(C) 1	1	1
9.	$\text { (A) }+\frac{d}{4}$	1	1
10.	(D) β-particle	1	1
11.	Higher	1	1
12.	Red	1	1
13.	2π	1	1
14.	$\begin{aligned} & \frac{\mathrm{h}}{\pi} \\ & \text { OR } \\ & 9 \times 10^{14} \mathrm{~J} \end{aligned}$	1	1
15.	90°	1	1
16.	X is α-particle (Note: Award half mark when a child finds out the correct atomic number and mass number of D_{2} i.e $70 \& 176$) OR Curves $1 \& 2$	1	1
17.	Virtual (Note: Award half mark if a child shows that focal length will become negative using Lens maker formula and does not conclude about nature of image.)	1	1
18.	X	1	1
		Page \|	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Alternatively
\[
\begin{aligned}
\& \text { Slope }=\rho \frac{l}{\mathrm{R}} \\
\& \mathrm{R}=\rho \frac{l}{\mathrm{~A}} \\
\& \mathrm{R}_{\mathrm{x}}>\mathrm{R}_{\mathrm{y}}
\end{aligned}
\] \\
(Note: Award half mark of this question, if a student writes the correct answer in terms of Resistance.)
\end{tabular} \& \& \\
\hline 19. \& \begin{tabular}{l}
 \\
Alternatively
\[
\begin{aligned}
\& V=E-I r \\
\& V=E-\left(\frac{E}{R+r}\right) r
\end{aligned}
\] \\
(Note: Award half mark of this question to the student if he/she write just formula.)
\end{tabular} \& 1 \& 1 \\
\hline 20. \& \begin{tabular}{l}
\(\mathrm{Tm}^{2}\) or Weber \\
When a magnetic field of one tesla is passing through an area of \(1 \mathrm{~m}^{2}\) normally, the flux is said to be of 1 Weber.
\end{tabular} \& 1 \& 1 \\
\hline \& SECTION- B \& \& \\
\hline 21. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Reason for part (a) \& 1 \\
Reason of part (b) \& 1 \\
\hline
\end{tabular} \\
(a) Zener diode is fabricated by heavy doping of both \(p\)-side, and \(n\)-side of the junction. Due to this, depletion region formed is very thin and the electric field of the junction is extremely high. \\
(b) It is easier to observe the change in the current with change in the light intensity, if
\end{tabular} \& 1

1 \&

\hline
\end{tabular}

	(Note: Please don't deduct marks, if a student does not mark all nuclei on the curve.) The nuclei lying at the middle flat portion are more stable because their binding energy per nucleon is large and shows more stability.	1	2
23.	(a) Identify ' X ' $1 / 2$ (b) Identification and Justification $1 / 2+1$ a) X is capacitor b) Ideal inductor \because In capacitor current leads by an angle $\pi / 2$ with voltage while in inductor voltage leads by an angle $\pi / 2$ with current	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$	2
24.	a) Identification of emwaves and one application b) Identification of emwaves and one application a) Gamma Rays Application : Food preservation/treatment of cancer/Brain Tumour b) Radio waves Application : In communication /Radio /T.V/Mobile (any one) (Note : Give credit of application part, if a student writes any other correct application.)	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
25.	(a) Depiction of equipotential surfaces 1 (b) Finding the amount of work done (a)	1	

	(a) $\mathrm{W}=q_{0} \Delta \mathrm{~V}$ As a small test charge q_{o} is moving along x -axis which is equipotential line for a given system therefore $\Delta \mathrm{V}=0$ Hence W=0	$1 / 2$ $1 / 2$	2
26.	(a) Sequence of color band 1 (b) Two properties of wire $\left(\frac{1}{2}+\frac{1}{2}\right)$ (a) Yellow , Violet, Orange and Silver (Note: if student does not write silver award half mark of this part.) (b) (1) Low temperature coefficient of Resistivity. (2) High Resistivity	$\begin{gathered} 1 \\ 1 / 2 \\ 1 / 2 \end{gathered}$	
27.	Formula for half life $1 / 2$ Calculation of half life 1 Calculation of Critical mass $1 / 2$$\begin{aligned} & \mathrm{N}=\mathrm{N}_{\mathrm{o}}\left(\frac{1}{2}\right)^{n} \\ & \frac{1}{16} \mathrm{~N}_{\mathrm{o}}=\mathrm{N}_{\mathrm{o}}\left(\frac{1}{2}\right)^{n} \\ & \mathrm{n}=4 \\ & \mathrm{t}=\mathrm{n} \times \mathrm{T}_{1 / 2} \\ & \mathrm{~T}_{1 / 2}=\frac{\mathrm{t}}{\mathrm{n}}=\frac{4}{4}=1 \text { day } \\ & \mathrm{N}=\mathrm{N}_{\mathrm{o}}\left(\frac{\mathrm{l}}{2}\right)^{n}=\mathrm{N}_{\mathrm{o}}\left(\frac{\mathrm{l}}{\frac{t}{2}}\right)^{\frac{t}{T / 2}} \\ & 4=\mathrm{N}_{\mathrm{o}}\left(\frac{\mathrm{l}}{2}\right)^{6} \\ & \mathrm{~N}_{\mathrm{o}}=256 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \end{aligned}$	

28.
a) Explanation of internal resistance
b) Circuit Diagram and determination of internal resistance $21 / 2$
a) The opposition offered by the electrolyte and electrodes of the cell to the flow of current is called internal resistance.
b)

The cell (emf E) whose internal resistance is to be determined is connected across a resistance box through a key K_{2}, as shown in figure above. With key k_{2} open. Balance point is obtained at length $\mathrm{l}_{1}\left(\mathrm{AN}_{1}\right)$ Then,

$$
\begin{equation*}
\epsilon=\varphi l_{1} \tag{1}
\end{equation*}
$$

When Key k_{2} is closed the cell sends a current (I) through the resistance box (R) . If V is the terminal potential difference of the cell and Balance is obtained at length $1_{2}\left(\mathrm{AN}_{2}\right)$

$$
\begin{equation*}
V=\varphi l_{2} \tag{2}
\end{equation*}
$$

From (1) and (2)
We have

$$
\begin{equation*}
\frac{\epsilon}{V} \quad=\frac{l_{1}}{l_{2}} \tag{3}
\end{equation*}
$$

But

$$
\begin{array}{cc}
\epsilon=\mathrm{V}-\mathrm{Ir} & \text { and } \quad \mathrm{V}=\mathrm{IR} \\
\frac{\epsilon}{V} \quad= & \frac{r+R}{R} \tag{4}
\end{array}
$$

From equation (3) and (4)

$$
\frac{r+R}{R}=\frac{l_{1}}{l_{2}}
$$

$\mathrm{r}=\mathrm{R}\left(\frac{l_{1}}{l_{2}}-1\right)$
29.

Circuit Diagram	1
Working of full wave rectifier	1
Drawing of input and output waveforms	1

$-$

30.	a) Calculation of work function $11 / 2$ b) Calculation of number of photoelectrons emitted per second $11 / 2$ a) $\begin{aligned} & \lambda=300 \mathrm{~nm} \quad, \mathrm{~V}_{0}=1.5 \mathrm{~V} \\ & \mathrm{eV} \\ & 0=\frac{h c}{\lambda}-\varphi \\ & \varphi=\frac{h c}{\lambda}-e \mathrm{~V}_{0} \\ &=\left(\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{300 \times 10^{-9} \times 1.6 \times 10^{-19}}-1.5\right) \mathrm{eV} \\ &=\left(\frac{6.63}{1.6 V}-1.5\right) \mathrm{eV} \\ &=4.14-1.5 \mathrm{eV} \\ &=2.64 \mathrm{eV} \end{aligned}$ b) Energy of Photon $\mathrm{E}=\frac{h c}{\lambda}$ $\begin{aligned} & =\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{300 \times 10^{-9}} \\ & =6.63 \times 10^{-19} \mathrm{~J} \end{aligned}$ No. of photons/sec $\begin{aligned} & \qquad \begin{array}{r} \mathrm{n}=\frac{P}{E}=\frac{100}{6.63 \times 10^{-9}} \\ =1.51 \times 10^{20} \end{array} \\ & \text { No. of electrons ejected } / \mathrm{sec}=1.51 \times 10^{20} \times \frac{60}{100} \\ & =9.06 \times 10^{19} \end{aligned}$ (NOTE : Award full marks for calculating number of electrons per second by alternative method)	1/2 $1 / 2$ 1/2 $1 / 2$ $1 / 2$ 1/2	3
31.	Diagram of cyclotron 1 Principle of Cyclotron 1 a) Derivation of expression for cyclotron frequency $1 / 2$ b) Expression for kinetic energy required $1 / 2$		

	Principle :- In the crossed electric and magnetic fields a charged particle get accelerated and its frequency of revolution in the magnetic field is independent of its energy. a) In cyclotron , the perpendicular magnetic field provides the required centripetal force. $\Rightarrow \mathrm{r}=\frac{m v^{2}}{r_{m v}}=\mathrm{qvB}$ Time period of revolution $\begin{aligned} & \mathrm{T}=\frac{2 \pi r}{v}=\frac{2 \pi m v}{q B v}=\frac{2 \pi m}{q B} \\ & \therefore \mathrm{~V}=\frac{1}{T}=\frac{q B}{2 \pi m} \end{aligned}$ (Note :- Award half mark If student writes expression for frequency directly.) (b) $\mathrm{K} . \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2}$ $\begin{aligned} & \because \mathrm{v}=\frac{r q B}{m} \\ & \mathrm{~K} . \mathrm{E}=\frac{1}{2} \mathrm{~m}\left(\frac{r q B}{m}\right)^{2} \end{aligned}$ $\mathrm{K} . \mathrm{E}=\frac{1}{2} \frac{r^{2} q^{2} B^{2}}{m}$	1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
32.	a) For calculating focal length of the mirror 1 b) For calculating displacement 2$\mathrm{u}=-15 \mathrm{~cm}$ (a) For Virtual Image $\begin{aligned} \mathrm{m} & =\frac{-V}{u} \\ 2 & =\frac{-V}{u} \end{aligned}$	1/2	

	$v=-2 u=-2 \times(-15)=30 \mathrm{~cm}$ From mirror formula $\begin{aligned} & \frac{1}{V}+\frac{1}{u}=\frac{1}{f} \\ & \frac{1}{30}-\frac{1}{15}=\frac{1}{f} \\ & \frac{1-2}{30}=\frac{1}{f} \\ & \mathrm{f}=-30 \mathrm{~cm} \end{aligned}$ (b) For Real Image $\begin{aligned} & \mathrm{m}=-2=\frac{-v}{u} \\ & \mathrm{v}=2 \mathrm{u}, \mathrm{f}=-30 \mathrm{~cm} \\ & \frac{1}{V}+\frac{1}{u}=\frac{1}{f} \\ & \frac{1}{2 u}+\frac{1}{u}=\frac{1}{-30} \\ & \frac{1+2}{2 u}=\frac{1}{-30} \\ & 2 \mathrm{u}=-90 \\ & \mathrm{u}=-45 \mathrm{~cm} \end{aligned}$ Displacement of object $=-45-(-15)$ $=-30 \mathrm{~cm}$ Away from the mirror	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1/2	3
33.	(a) Working Principle of ac generator 1 Derivation of expression for induced emf 1 (b) Function of Slip Rings 1 (a) It is based upon the principle of electromagnetic induction $\begin{array}{r} \text { Magnetic Flux } \Phi=\text { NBA } \cos \theta \\ \Phi=\text { NBA } \cos \omega t \end{array}$	1	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
According to Faradays law
\[
\begin{aligned}
\& \text { Emf } \mathrm{e}=\frac{-d \Phi}{d t}=\frac{-d(\mathrm{NBA} \cos \omega t)}{d t} \\
\& \mathrm{e}=\text { NBA } \omega \sin \omega t
\end{aligned}
\] \\
(b) it helps current to change its direction after every half rotation. \\
OR \\
Explanation of parts (a),(b) \& (c) \\
(a) As power \(\mathrm{P}=\mathrm{V}\) I, In step-up voltage transformer output voltage \((\mathrm{V})\) is more than the input voltage. Hence output current is less than the input current. \\
(b) To minimize the eddy current. \\
(c) Input power is more than the output power because in actual transformer small energy loses occur due to flux leakage, resistance of winding, eddy current and hysteresis etc.
\end{tabular} \& 1

1
1
1
1 \& 3

\hline 34. \& | (a) Ray Diagram |
| :--- |
| Ray diagram |
| (Note: deduct half mark, if a student does not mark the direction of the propagation of the ray) |
| Expression for magnification $\mathrm{m}_{\mathrm{o}}=\frac{\mathrm{h} \prime}{\mathrm{~h}}=\frac{\mathrm{L}}{\mathrm{fo}}$ |
| where we have used the result $\begin{aligned} & \tan \beta=\left(\frac{\mathrm{h}}{\mathrm{fo}}\right)=\frac{\mathrm{h}^{\prime}}{\mathrm{L}} \\ & \mathrm{~m}_{\mathrm{e}}=\left(1+\frac{\mathrm{D}}{\mathrm{fe}}\right) \end{aligned}$ | \& $1 / 2$

$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

From Snell's Law
$\mu=\frac{\sin i}{\sin r}$
$\mathrm{i}=60^{\circ}, \mu=\sqrt{3}$
$\sqrt{3}=\frac{\sin 60^{\circ}}{\sin r}=\frac{\sqrt{3}}{2(\sin r)}$
$\sin r=\frac{1}{2}=\sin 30^{\circ}$

$$
\mathrm{r}=30^{\circ}
$$

So, ray will go perpendicular to AD For $\mathrm{II}^{\text {nd }}$ prism ADC
$i_{c}=30^{\circ}$
$\therefore \sin i_{c}=\frac{1}{\mu}$
$\operatorname{Sin} 30^{\circ}=\frac{1}{\mu}$
$\mu=2$

OR
(a) Derivation of the relation between μ_{1}, μ_{2} and R
(b) Finding the intensity of light transmitted by P_{1} and P_{2}
(a)

Tan $\angle N O M=\frac{M N}{O M}$
Tan $\angle N C M=\frac{M N}{M C}$
$\operatorname{Tan} \angle N I M=\frac{M N}{M I}$

Now, for Δ VOC, L_{i} is the exterior angle

Therefore, $\mathrm{L}_{\mathrm{i}}=\angle N O M+\angle N C M$
$\mathrm{i}=\frac{M N}{O M}+\frac{M N}{M C}$

Similarly,
$\mathrm{r}=\angle N C M-\angle N I M$
ie $\mathrm{r}=\frac{M N}{M C}-\frac{M N}{M I}$ \qquad

By snells law
$\mu_{1} \sin \mathrm{i}=\mu_{2} \sin \mathrm{r}$

For small angle
$\mu_{1} \mathrm{i}=\mu_{2} \mathrm{r}$

Substituting i and r from equation $1 \& 2$, we get

$$
\begin{equation*}
\frac{\mu_{1}}{O M}+\frac{\mu_{2}}{M I}=\frac{\mu_{2}-\mu_{1}}{M C} \tag{3}
\end{equation*}
$$

Here		
$\mathrm{OM}=-\mathrm{u}, \mathrm{MI}=+\mathrm{v}, \mathrm{MC}=+\mathrm{R}$		
On substituting in equation 3 , we get	2	
$\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$		
Note: Give full credit of this part, if a student takes medium of μ_{1} as denser and μ_{2} as rarer		
(b) According to Malus's law intensity of light transmitted from P_{2}		
$I_{p_{2}}=I_{o} \cos ^{2} \theta$	1/2	
Where $I_{o}=\frac{2}{2} \mathrm{~mW}=1 \mathrm{~mW}$	1/2	
Here $\theta=60^{\circ}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	5
$I_{p_{2}}=(1 \mathrm{~mW}) \cos ^{2} 60^{\circ}=0.25 \mathrm{~mW}$		

36.

a) Derivation of expression for Capacitance
b) Expression for the Force experienced
c) Calculation of total charge stored
(a) Electric field between the parallel plate capacitor.

$$
\mathrm{E}=\frac{\sigma}{\epsilon_{0}}=\frac{Q}{A \epsilon_{0}}
$$

We know $\mathrm{V}=\mathrm{Ed}=\frac{\sigma}{A \epsilon_{0}} d$
As capacitance $\frac{Q}{V}=\mathrm{C}$

$$
\mathrm{C}=\frac{A \epsilon_{0}}{d}
$$

(a) Electric Field due to the positive plate on the negative plate $\mathrm{E}=\frac{\sigma}{2 \epsilon_{0}}=\frac{\sigma}{2 A \epsilon_{0}}$

Hence Force experienced by negative plate due to positive plate
$\mathrm{F}=-\mathrm{qE}=-\mathrm{q} \times \frac{q}{2 A \epsilon_{0}}=-\frac{q 2}{2 A \epsilon_{0}}$
-ve sign shows attractive force.
(c) $\mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4} are connected in series.

$$
\frac{1}{C s}=\frac{1}{C_{2}}+\frac{1}{C_{3}}+\frac{1}{C_{4}}=\frac{1}{12}+\frac{1}{12}+\frac{1}{12}
$$

$\mathrm{Cs}=4 \mu \mathrm{~F}$

Equivalent capacitance of the Network

$$
\begin{aligned}
\mathrm{C} & =\mathrm{C}_{\mathrm{s}}+\mathrm{C}_{4} \\
& =4 \mu \mathrm{~F}+12 \mu \mathrm{~F} \\
& =16 \mu \mathrm{~F}
\end{aligned}
$$

Total charge

$$
\mathrm{Q}=\mathrm{CV}
$$

$$
=16 \times 10^{-16} \times 100
$$

$$
\mathrm{Q}=1600 \mu \mathrm{C}
$$

OR

a) Principle of Wheatstone Bridge
Circuit Diagram
Determination of specific resistance
b) Calculation of potential difference between A \& C
(a) Principle: If four resistors $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ and R_{4} are connected in the four sides of a quadrilateral. The galvanometer is connected in one of the diagonal and battery is connected across another diagonal then, the conductors
$\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$, provides no current flows through the galvanometer

For specific resistance when no current flows in galvanometer
$\frac{R}{s}=\frac{\mathrm{R}_{\mathrm{AD}}}{\mathrm{R}_{\mathrm{DC}}}$ \qquad $\ldots 1$
$\frac{\mathrm{R}_{\mathrm{AD}}}{\mathrm{R}_{\mathrm{DC}}}=\frac{l}{100-l}$
........... 2
.2

From equation $1 \& 2$

$$
\begin{aligned}
& \frac{R}{S}=\frac{l}{100-l} \\
& R=\mathrm{S}\left(\frac{l}{100-l}\right)
\end{aligned}
$$

Resistivity of the wire
$\rho=\frac{R A}{L}=\mathrm{R} \frac{\pi r^{2}}{L}$
where $\mathrm{L}=$ Length of unknown resistance wire
$\mathrm{r}=$ radius of unknown resistance wire
(b)

37.

(a) Diagram of moving coil galvanometer	1
Working	1
Justification for using radial magnetic field	$1 / 2$
(b) Calculation of Resistance	$21 / 2$

(a)

Working: when a current flow through the coil, a torque acts on it.

$\tau=$ NIAB

Where symbols have their usual meaning. since the field is radial by design, we have taken $\sin \theta=1$ in the above expression for torque. The magnetic torque NIAB tends to rotate the coil. A spring provide a counter torque $\mathrm{k} \varnothing$ that balances the magnetic torque NIAB; resulting in a steady angular deflection \emptyset. In equilibrium

$$
\mathrm{k} \emptyset=\mathrm{NIAB}
$$

Where k is the tensional constant of the spring. The deflection \emptyset is indicated on the scale by a pointer attached to the spring. We have

$$
\emptyset=\left(\frac{N A B}{k}\right) I
$$

To calibrate the scale of galvanometer/to make scale linear
(b) $\mathrm{R}=\frac{V}{I_{g}}-\mathrm{G}$

$$
\begin{align*}
& R_{1}=\frac{V}{I_{g}}-\mathrm{G}=2000=\frac{V}{I_{g}}-\mathrm{G} \tag{1}\\
& R_{2}=\frac{V}{I_{g}}-\mathrm{G}=5000=\frac{2 V}{I_{g}}-\mathrm{G} \tag{2}\\
& \mathrm{R}=\frac{V}{2 I_{g}}-\mathrm{G} \tag{3}
\end{align*}
$$

from equation $1 \& 2$
$3000=\frac{V}{I_{g}}$
From equation (1)
$2000=3000-\mathrm{G}$
$\mathrm{G}=1000 \Omega$
$\mathrm{R}=\frac{3000}{2}-1000$
$\mathrm{R}=1500-1000$
$\mathrm{R}=500 \Omega$
OR
(a) (i) Expression for emf induced and polarity
$11 / 2+1 / 2$
$1 / 2+1 / 2$
(b) Calculation of mutual inductance
(a) (i) Magnetic flux linked with the loop at any instant of time is $\emptyset_{B}=\mathrm{B}(l \mathrm{x})$
$\left|\frac{d \emptyset_{B}}{d t}\right|=B l \frac{d x}{d t}$

$$
\left|\frac{d \emptyset_{B}}{d t}\right|=B l_{v} \quad \because\left(\frac{d x}{d t}=v\right)
$$

According to Faradays Law of Electromagnetic induction

$$
\left|\frac{d \emptyset_{B}}{d t}\right|=\mathrm{e}
$$

Hence $\mathrm{e}=\mathrm{B} / \mathrm{v}$

Alternative Method

(i) When rod moves outwards, according to Lorentz magnetic force

$$
\overrightarrow{F_{m}}=\mathrm{q}(\vec{V} \times \vec{B})
$$

Free electrons inside the conductor experience force towards the end X . the positive charge moves towards end y of the conductor due to accumulation of charges emf is developed across the conductor. Consider a charge ' q ' at the end X, work done by magnetic field in moving it through the length ' l ' of the conductor is

$$
\begin{aligned}
& \mathrm{W}=F_{m} l \\
& =(\mathrm{qvB} \sin \theta) l \\
& \mathrm{~W}=\mathrm{qvB} l \quad\left(\therefore \theta=90^{\circ}\right)
\end{aligned}
$$

According to definition of emf

| $\mathrm{e}=\frac{W}{q}=\mathrm{vB} l$ | |
| :--- | :--- | :---: | :---: |
| Hence, emf $\mathrm{e}=\mathrm{vB} l$ | |
| The end X of coil be at lower potential and Y will be at higher potential. | |
| (ii) $\mathrm{I}=\frac{e}{r}$ | |
| $\mathrm{I}=\frac{B v l}{r}$ | |
| Direction of induced current is from end X to end | $1 / 2$ |
| (b) | |
| $\mathrm{M}=\frac{\mu_{0} \pi r_{1}^{2}}{2 r_{2}}$ | |
| $=\frac{4 \pi \times 10^{-7} \times \pi \times 0.5^{2} \times 10^{-4}}{2 \times 11 \times 10^{-2}} \mathrm{H}$ | |
| $=2 \times(0.25) \times 10^{-9} \mathrm{x} \frac{\pi^{2}}{11} \mathrm{H}$ | |
| $=4.49 \times 10^{-10} \mathrm{H}$ | $1 / 2$ |

