PART-I

1.	The number of water molecules in 250 mL of water is closest to [Given: Density of water is 1.0 g mL ⁻¹ ; Avogadro's number = 6.023×10^{23}]								
	c. 1.5×10^{23}	d. 33.6×10^{23}							
2.	 Among the following, the correct state a. pH decreases when solid amn solution of NH₃ b. pH decreases when solid sodiu of acetic acid c. pH decreases when solid NaCl a d. pH decreases when solid sodiu of oxalic acid 	ong the following, the correct statement is pH decreases when solid ammonium chloride is added to a dilute aqueous solution of NH ₃ pH decreases when solid sodium acetate is added to dilute aqueous solution of acetic acid pH decreases when solid NaCl added to a dilute aqueous solution of NaOH pH decreases when solid sodium oxalate is added to a dilute aqueous solution of oxalic acid							
3.	The solubility of BaSO ₄ in pure water ([Given :K _{sp} for BaSO ₄ is 1.0×10^{-10} at 2 a. 1.0×10^{-5} c. 2.3×10^{-5}	(in g L ⁻¹) is closest to 5°C. Molecular weight of BaSO ₄ is 233 g mol ⁻¹] b. 1.0×10^{-3} d. 2.3×10^{-3}							
4.	 Among the following, the INCORRECT a. No two electrons in an atom can b. The maximum number of electrons in an orbital to n2+2 c. Electrons in an orbital must have d. In the ground state, atomic orbital energies 	 Among the following, the INCORRECT statement is a. No two electrons in an atom can have the same set of four quantum numbers b. The maximum number of electrons in the shell with principal quantum number, n, is equal to n2+2 c. Electrons in an orbital must have opposite spin d. In the ground state, atomic orbitals are filled in the order of their increasing energies 							
5.	A container of volume 2.24 L can with before exploding. The maximum amo this container at this temperature is cl a. 2.8 c. 1.4	hstand a maximum pressure of 2 atm at 298 K unt of nitrogen (in g) that can be safely put in osest to b. 5.6 d. 4.2							
6.	The compound shown below $ \begin{array}{c} $	afts reaction between loride ne ride oride							

KVPY-2018 (Chemistry)

KVPY-2018 (Chemistry)

Page | 2

KVPY-2018 (Chemistry) Stream SA

13.	The formal oxidation numbers of Cr and Cl in the ions $Cr_2O_7^{2-}$ and Cl O_3^- respectively, are								
	a. +6 and + 7	b. +7 and +5							
	c. +6 and + 5	d. +8 and +7	7						
14.	A filter paper soaked in salt X turns brown when exposed to HNO $_3$ vapor. The salt X is –								
	a. KCl	b. KBr							
	c. KI	d. K ₂ SO ₄							
15.	 The role of haemoglobin is to a. store oxygen in muscles b. transport oxygen to difference c. convert CO to CO₂ d. convert CO₂ into carbonic a 	nt parts of the body cid							
PART-II									
16.	Among the following, the species with identical bond order area.CO and O_2^{2-} b. O_2^{2-} and COc. O_2^{2-} and B_2 d.CO and N_2^+								
17.	The quantity of heat (in J) required to raise the temperature of 1.0 kg of ethanol from 293.45 K to the boiling point and then change the liquid to vapour at that temperature is closest to [Given : Boiling point of ethanol 351.45 K Specific heat capacity of liquid ethanol 2.44 J g ⁻¹ K ⁻¹ Latent heat of vaporization of ethanol 855 J g ⁻¹] a. 1.42×10^2 b. 9.97×10^2 c. 1.42×10^5 d. 9.97×10^5								
18.	A solution of 20.2 of 1,2-dibrom produce 3.58 g of an unsaturated [Atomic weight of Br is 80] a. 18 c. 89	opropane in MeOH upon heatin compound X. The yield (%) of X is b. 85 d. 30	g with excess Zn closest to						

KVPY-2018 (Chemistry) Stream SA

- 19. The lower stability of ethyl anion compared to methyl anion and the higher stability of ethyl radical compared to methyl radical, respectively, are due to
 - a. +I effect of the methyl group in ethyl anion and $\sigma \rightarrow$ p-orbital conjugation in ethyl radical
 - b. -I effect of the methyl group in ethyl anion and $\sigma \to \sigma *$ conjugation in ethyl radical
 - c. +I effect of the methyl group in both cases
 - d. +I effect of the methyl group in ethyl anion and $\sigma \rightarrow \sigma *$ conjugation in ethyl radical
- 20. The F Br-F bond angles in BrF₅ and the Cl P Cl bond angles in PCl₅ , respectively, are
 - a. $identical in BrF_5 but non-identical in PCl_5$
 - b. identical in BrF5 and identical in PCl5
 - c. non-identical in BrF₅ but identical in PCl₅
 - d. non-identical in BrF5 and non-identical in PCl5

ANSWER KEYS

1.	(a)	2. (a)	3. (d)	4. (b)	5. (b)	6. (a)	7. (c)	8. (b)	9. (a)	10. (d)
11.	(a)	12. (c)	13.(c)	14.(c)	15. (b)	16. (c)	17. (d)	18.(b)	19. (a)	20. (d)
					KVPY-2	2018 (Chemis	try)		Р	age 5

opyright © Think and Learn Pvt. Ltd.

<u>KVPY 2018 (CHEMISTRY) – Stream - (SA)</u> <u>Solution</u>

PART-I

1. (a)

Given Density of water = 1 g / mlVolume of water = 250 ml We know that $d = \frac{m}{v} \Rightarrow m = d \times v$... Mass of $H_2O = 250 \times 1 = 250 \text{ g}$ Mw of $H_2O = 18 \text{ g mol}^{-1}$ Moles of H₂O = $\frac{\text{wt}}{\text{Mw}} = \frac{250}{18} = 13.89$ moles ÷ We know that in 1 mole, the number of H₂O Molecules = $N_A = 6.023 \times 10^{23}$ molecules In 13.89 moles, the no of H₂O Molecules $= 6.023 \times 10^{23} \times 13.89$ $= 83.6 \times 10^{23}$ Molecules Therefore, the correct option is (a). 2. (a) dil. aq. Solⁿ of NH₃ \rightarrow NH₃ + H₂O \Rightarrow NH₄OH (Weak Base) $NH_4Cl \xrightarrow{H_2O} NH_4OH$ + HCl Strong acid (100% Ionisation) (Weak Base) If we add NH₄Cl, It is an acidic salt because it is prepared by strong acid (HCl) weak base (NH₄OH) So overall pH \downarrow because concentration of H⁺ ion \uparrow $pH \propto \frac{1}{[H^+]}$ or $[H^+] \uparrow pH \downarrow$ Therefore, the correct option is (a). 3. (d) Given. K_{sp} of BaSO₄ = 1.0 × 10⁻¹⁰ {Moles(n) = $\frac{\text{weight}(g)}{\text{molecular weight}}$ Molecular weight of BaSO₄ = 233 g mol⁻¹ BaSO₄ Ba⁺² + SO₄²⁻

 K_{sp} (BaSO₄) = S²

S = $\sqrt{K_{sp}} = \sqrt{1 \times 10^{-10}} = 10^{-5} \text{ mol } \text{L}^{-1}$ \Rightarrow $S = 10^{-5} \times Mw = 10^{-5} \times 233 \text{ g L}^{-1}$ \Rightarrow Moles (n) = $\frac{wt(g)}{mw}$ $Wt(g) = n \times Mw$ $S = 2.33 \times 10^{-3} \text{ gL}^{-1}$ Therefore, the correct option is (d). 4. (b) (A) According to Pauli's Exclusion Principle, no two e-s in the same atom can have identical values for all four of their quantum numbers. for He $\rightarrow 1s^2$ Ex $1^{st}e^{-} \rightarrow n = 1, \ \ell = 0, \ m = 0$ $s = +\frac{1}{2}$ $II^{nd}e^{-} \rightarrow n = 1, \ell = 0, m = 0$ The Maximum number of electrons in the shell with principle quantum (B) number'n' is equal to $2n^2$ Electron in an orbital must have opposite (C) Spin Example \downarrow \uparrow (D) In ground state, atomic orbitals are filled in the order of their \uparrow energy [see ($n+\ell$) Rule) 1s > 2s > 2p > 3s....Therefore, the correct option is (b). 5. (b) Given v = 2.24 L T = 298 K $R = 0.0821 \text{ atm mol}^{-1} \text{ k}^{-1}$ p = 2 atmfrom ideal gas equation Pv =nRT Moles of N₂ = $\frac{Pv}{RT} = \frac{2 \times 2.24}{0.0821 \times 298} = 0.1831$ moles. \Rightarrow Molecular weight of $N_2 = 28 \text{ g mol}^{-1}$ \Rightarrow Weight \Rightarrow Weight (g) = moles × Molecular Weight (g mol⁻¹) \therefore Moles = -Molecular weight Wt of N₂ = $0.1831 \times 28 \approx 5.6$ g Therefore, the correct option is (B). 6. (a)

7.

8.

9. (a)

 \rightarrow It is most stable carbocation due to Resonance

Hence, it reacts most readily with $AgNO_3$ to give a precipitate Therefore, the correct option is (a).

11. (a)

As we go down the group IA, there is \uparrow in shell, so size of atom $\uparrow\&$ energy of 2s

orbital \downarrow

Hence the correct order is \Rightarrow K < Na < Li < H Therefore, the correct option is (a).

12. (c)

In XeF₄ : \rightarrow Xe has 8e⁻ its outer most shell (initial)

 \rightarrow After formation of XeF₄

It has 4 bond pair and 2 lone pair as

shown in figure

Hence steric number = $\ell p + BP = 6$

Thus the hybridization is SP³d² Therefore, the correct option is (c).

13. (c)

Filter paper soaked with KI turns brown when exposed to HNO_3 vapour to libration of I₂, the reaction follow as $6KI + 8HNO_3 \longrightarrow 6KNO_3 + 4H_2O + 2NO + 3I_2$

 $\begin{array}{c} F \\ F \\ \hline \\ F \\ \hline \\ \hline \\ F \\ \hline \\ \\ (..) \rightarrow \ell p \\ \end{array} \right) P \\ \left\{ \begin{array}{c} Xe - F \rightarrow BP \\ (..) \rightarrow \ell p \\ \hline \\ \\ \end{array} \right)$

Therefore, the correct option is (c).

14. (c)

Let the oxidation number of Cr = x Cr₂O₇²⁻ \Rightarrow 2x + (-2) × 7 = -2 \Rightarrow 2x = 12 x = +6 Let the oxidation number of Cl = x ClO₃⁻ \rightarrow x (-2) × 3 = -1 \Rightarrow x = +5

Therefore, the correct option is (c).

15. (b)

The role of haemoglobin is to transport of oxygen to different parts of the body. Therefore, the correct option is (b).

PART-II

(c) According to MOT, bond order of all species are

 $0_2^{2-} \rightarrow \overset{\Theta}{O} - \overset{\Theta}{O}$ (A) $CO \rightarrow O \equiv C$, B.0 = 1B.0 = 3 $0_2^{-2} \rightarrow B.0 = 1$, $CO \rightarrow B.0 = 3$, (B) $CO \rightarrow B.O = 3$ $B_2 \rightarrow B - B$ (C) B.0 = 1 $CO \rightarrow B.O = 3$, $N_{2}^{+} \rightarrow B.0 = 2.5$ (D) Hence here identical bond order observed in case of (C) \Rightarrow Bond order. $O_2^{2-} = B_2 = 1$ Therefore, the correct option is (c). 17. (d) $\xrightarrow{\Delta}$ C₂H₅OH(ℓ) \longrightarrow C₂H₅OH(g) $C_2H_5OH(\ell)$ T = 293.45K $T = T_b = 351.45K$ $T = T_b = 351.45K$ $(T_b = boiling point)$ Heat required (Q) = $Ms\Delta T$ + Heat of vaporization $= 10^3 \times 2.44 [351.45 - 293.45] + 10^3 (855)$ $= 10^{3} [(2.44 \times 58) + 855] = 10^{3} [996.52]$ $Q = 9.97 \times 10^5 J$ Therefore, the correct option is (d). 18. (b) Reaction of Zn with 1, 2 dibromo propane in MeOH follow as CH_3 - $CH_-CH_3 \xrightarrow{Zn} CH_3$ = $CH_-CH_3 + ZnBr_2$ Β̈́r Br \rightarrow Here 1 mol. Reactant give one mole product \rightarrow M. wt of Reactant (1, 2 dibromo propane) = 202 g mol⁻¹ \rightarrow wt of Reactant = 20.2 g \rightarrow Mw of product = 42 g mol⁻¹ wt of product = 3.58 g : We know moles = wt of substance Mw of substance Obtain moles of product = $\frac{3.58}{42} = 0.085$ moles : Moles of Reactant = $\frac{20.2}{202} = 0.1$ moles \rightarrow Now according to equation theoretically, Mole of Product = moles of Reactant = 0.1 moles % yield = $\frac{\text{obtain Moles}}{\text{theoriticle moles}} \times 100$ $=\frac{0.085}{0.1}\times100=85\%$ Therefore, the correct option is (b).

16.

- **19.** (a)
 - (1) $CH_3 CH_2^{\Theta} \rightarrow sp^3hybridization \rightarrow Pyramidal shape \rightarrow No hyper conjugation +IEffect$

 $H-C^{-} \rightarrow No, +I$ effect group attached

CH.

In ethyl anion, methyl group have + I effect which \uparrow the e- density on carbanion and decrease the stability

$$\begin{array}{ccc} (2) & CH_{a} - CH_{a}^{\bullet} & , \\ \downarrow & \end{array}$$

Н

Due to σ – p orbital conjugation (Hyperconjugation), it is more stable compared to CH₃[•] redical.

⇒ Number of α H \uparrow stability of Radical \uparrow . Because number of hyperconjugation structure \uparrow and energy of molecule \downarrow .

Therefore, the correct option is (a).

20. (d)

(1) BrF₅ $\longrightarrow \frac{7+5}{2} = 6 \rightarrow sp^{3}d^{2}Hybridisation$ $n \rightarrow \ell p + Bp \implies 6 = 5 + \ell p$ $\ell p = 1$ F F (BrF₅)

Hence the shape of BrF₅ is square pyramidal Hence here [F– Br – F] bond angle is non identicals

(2)
$$PCl_5 \rightarrow \frac{5+5}{2} = 5 \rightarrow Sp^3d$$

 $[\ell p = n - BP = 5 - 5 = 0]$

 \rightarrow Hence the shape is Trigonal bipyramidal

 \rightarrow (Cl – P – Cl) bond angle 120° & 90°

 \Rightarrow So, here (Cl-P-Cl) bond angle is not identical

Therefore, the correct option is (d).