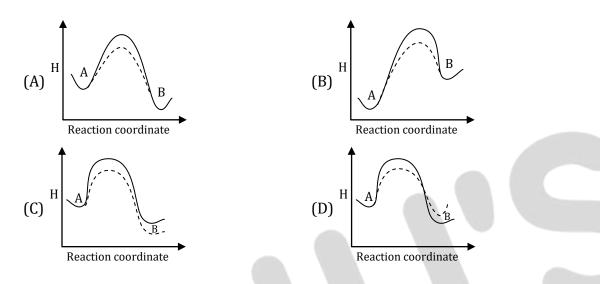
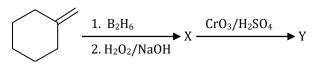

PART-I

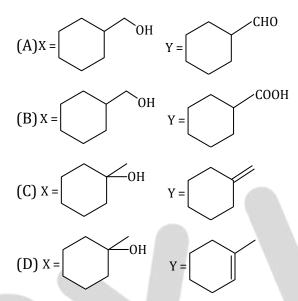


6.	Upon reaction with CH ₃ MgBr followed by protonation, the compound that produces ethanol is							
	(A) CH ₃ CHO	(В) НСООН	(С) НСНО	(D) (CHO) ₂				
7.	Which of the follow	Which of the following is NOT an oxidation-reduction reaction?						
	(A) $H_2 + Br_2 \rightarrow 2HBr$ (B) NaCl + AgNO ₃ \rightarrow NaNO ₃ + AgCl							
	(C) $2Na_2S_2O_3 + I_2 \rightarrow I_2$	$Na_2S_4O_6 + 2NaI$ (D) ($Cl_2 + H_2O \rightarrow HCl + HOCl$					
8.	The thermal stability of alkaline earth metal carbonates–MgCO ₃ , CaCO ₃ , SrCO ₃ and BaCO ₃ , follows the order							
		A) $BaCO_3 > SrCO_3 > CaCO_3 > MgCO_3$ (B) $CaCO_3 > SrCO_3 > BaCO_3 > MgCO_3$ C) $MgCO_3 > CaCO_3 > SrCO_3 > BaCO_3$ (D) $SrCO_3 > CaCO_3 > MgCO_3 > BaCO_3$						
	(C) MgCO32 CaCO32			5- Dacto3				
9.	When a mixture of	When a mixture of diborane and ammonia is heated, the final product is						
	(A) BH ₃	(B) NH ₄ BH ₄	(C) NH ₂ NH ₂	(D) B ₃ N ₃ H ₆				
10.	-	-	est reducing agent is					
	(A) Ni	(B) Cu	(C) Zn	(D) Fe				
11.	The molecule which	h is NOT hydrolysed	hy water at 25°C is					
11.	(A) AlCl ₃	(B) SiCl ₄	(C) BF ₃	(D) SF ₆				
12.	Among the followi upon heating is	ng compounds, the	one which does NO	f r produce nitrogen gas				
	(A) (NH ₄) ₂ Cr ₂ O ₇	(B) NaN ₃	(C) NH4NO2	(D) (NH4)2(C2O4)				
13.								
15.	Chlorine has two naturally occurring isotopes, ³⁵ Cl and ³⁷ Cl. If the atomic mass of Cl is 35.45, the ratio of natural abundance of ³⁵ Cl and ³⁷ Cl is closest to							
	(A) 3.5 : 1	(B) 3 :1	(C) 2.5 : 1	(D) 4 : 1				
14.	 The reaction C₂H₆(g) -> C₂H₄(g) + H₂(g) is at equilibrium in a closed vessel at 1000 K. The enthalpy change (ΔH) for the reaction is 137.0 kJ mol⁻¹. Which one of the following actions would shift the equilibrium to the right? (A) Decreasing the volume of the closed reaction vessel (B) Decreasing the temperature at which the reaction is performed (C) Adding an inert gas to the closed reaction vessel (D) Increasing the volume of the closed reaction vessel 							
	-							

15. The enthalpy (H) of an elementary exothermic reaction A -> B is schematically plotted against the reaction coordinate. The plots in the presence and absence of a catalyst are shown in dashed and solid lines, respectively. Identify the correct plot for the reaction.



- 16. Mg(OH)₂is precipitated when NaOH is added to a solution of Mg²⁺. If the final concentration of Mg²⁺is 10^{-10} M, the concentration of OH-(M) in the solution is [Solubility product for Mg (OH)₂= 5.6×10^{-12}] (A) 0.056 (B) 0.12 (C) 0.24 (D) 0.025
- A constant current (0.5 amp) is passed for 1 hour through (i) aqueous AgNO₃, (ii) aqueous CuSO₄and (iii) molten AlF₃, separately. The ratio of the mass of the metals deposited on the cathode is [M_{Ag}, M_{Cu}, M_{Al} are molar masses of the respective metals]
 (A) M_{Ag}: 2 M_{Cu}: 3 M_{A1}
 (B) M_{Ag}: M_{Cu}: M_{A1}
 (C) 6 M_{Ag}: 3 M_{Cu}: 2 M_{A1}
 (D) 3 M_{Ag}: 2M_{Cu}: M_{A1}
- A reaction has an activation energy of 209 kJ mol⁻¹. The rate increases 10–fold when the temperature is increased from 27°C to X °C. The temperature X is closest to [Gas constant, R = 8.314 J mol⁻¹K⁻¹]
 (A) 35 (B) 40 (C) 30 (D) 45
- 19. A mineral consists of a cubic close-packed structure formed by O²-ions where half the octahedral voids are occupied by Al³⁺and one eighth of the tetrahedral voids are occupied by Mn²⁺. The chemical formula of the mineral is

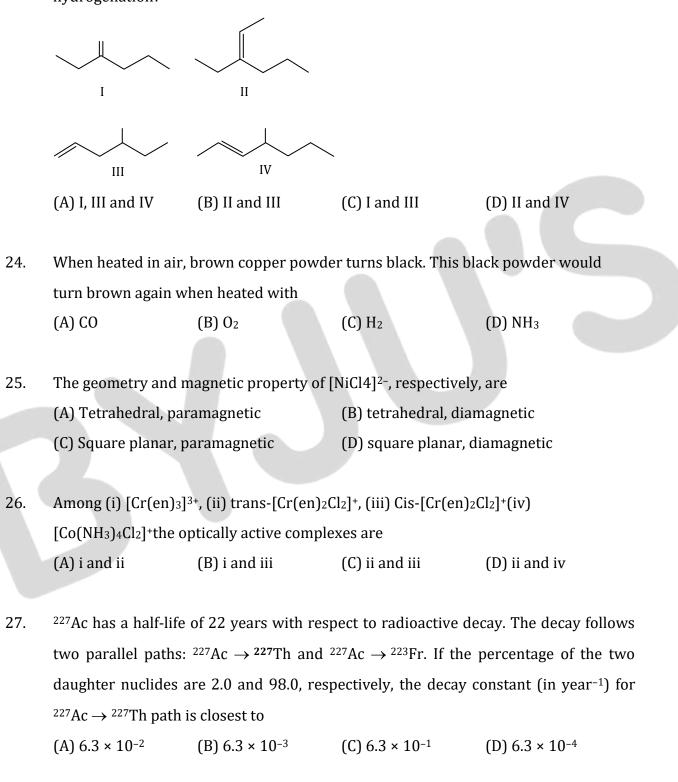

 (A) Mn₃Al₂O₆
 (B) MnAl₂O₄
 (C) MnAl₄O₇
 (D) Mn₂Al₂O₅
- 20.For a 4p orbital, the numbers of radial and angular nodes, respectively, are
(A) 3,2(B) 1,2(C) 2, 4(D) 2,1

PART-II

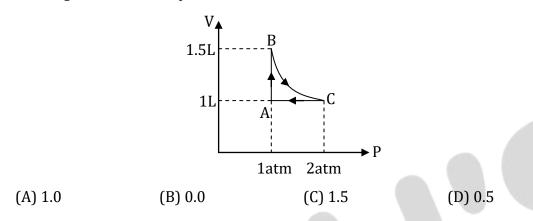
21. In the following reaction sequence

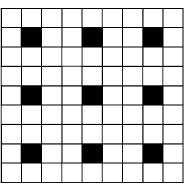
X and Y are

22. In the following reactions


$$\begin{array}{c} 0 \\ H_{3}C \\ CH_{3} \\ H_{3}C \\ CH_{3} \\ H_{3}C \\ CH_{3} \\ C$$

X and Y are


(A)
$$X = \begin{array}{c} H \\ H_{3C} \\ H_$$


23. Which of the following alkenes can generate optically active compounds upon hydrogenation?

28. A system consisting of 1 mol of an ideal gas undergoes a reversible process, $A \rightarrow B \rightarrow C$ $\rightarrow A$ (schematically indicated in the figure below). If the temperature at the starting point A is 300 K and the work done in the process $B \rightarrow C$ is 1 L atm, the heat exchanged in the entire process in L atm is

- 29. A mixture of toluene and benzene boils at 100°C. Assuming ideal behaviour, the mole fraction of toluene in the mixture is closest to [Vapour pressures of pure toluene and pure benzene at 100°C are 0.742 and 1.800 bar respectively. 1 atm = 1.013 bar]
 (A) 0.824 (B) 0.744 (C) 0.544 (D) 0.624
- 30. A two-dimensional solid pattern formed by two different atoms X and Y is shown below. The black and white squares represent atoms X and Y, respectively. The simplest formula for the compound based on the unit cell from the pattern is

(A) XY₈

(B) X4Y9

(C) XY₂

(D) XY₄

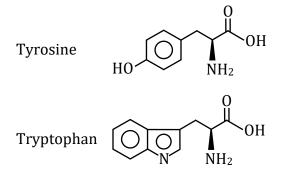
KVPY-SX_2017 (CHEMISTRY)

Page | 6

ANSWER KEY

1.	(A)	2.	(B)	3.	(D)	4.	(C)	5.	(B)
6.	(C)	7.	(B)	8.	(A)	9.	(D)	10.	(C)
11.	(D)	12.	(D)	13.	(B)	14.	(D)	15.	(A)
16.	(C)	17.	(C)	18.	(A)	19.	(B)	20.	(D)
21.	(B)	22.	(A)	23.	(C)	24.	(C)	25.	(A)
26.	(B)	27.	(D)	28.	(D)	29.	(B)	30.	(A)

SOLUTIONS

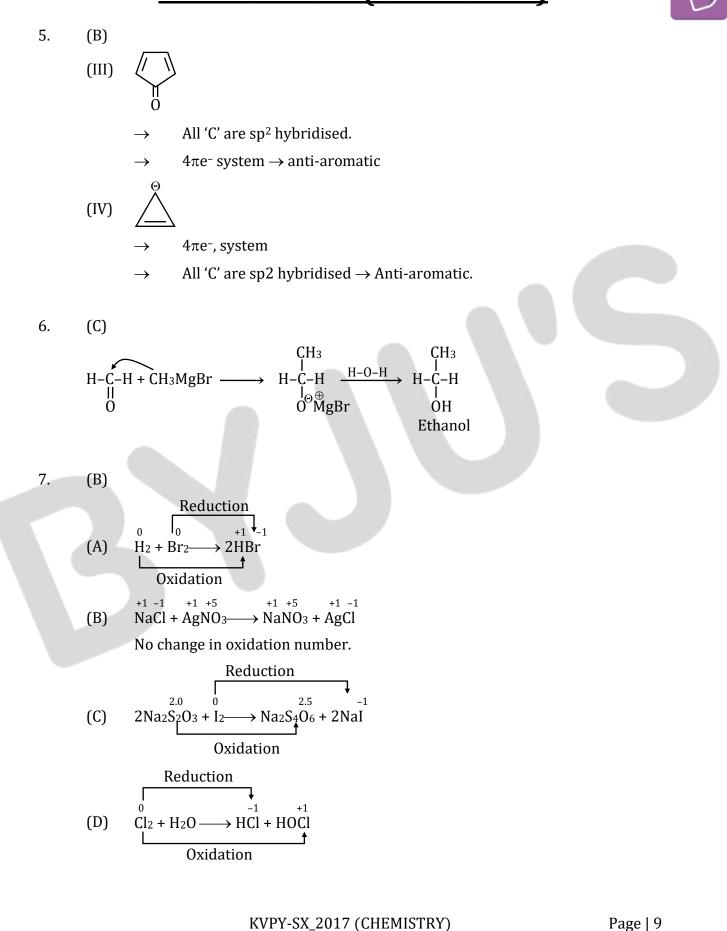

PART-I

1. (A)

$$(\text{Weak +M effect}) \xrightarrow{\text{O} \\ \text{II} \\ \text{O} \\ \text{O}$$

In the above molecule, lone pair of nitrogen is in conjugation with benzene as well as carbonyl group. Therefore, +M effect of 'NH' group on benzene will be weak. Only mono substitution will take place.

2. (B)


G.I. ~ Chiral centre CH₃+CH=CH+CH-CH₃ ÓН n = 2 \therefore Number of possible stereoisomers = $2^n = 2^2 = 4$ $G.I. \rightarrow Can be cis/trans.$ Chiral centre \rightarrow can be R/S. : possible combination Cis – R Cis – S Trans – R Trans – S (C) 4. $:Cl: \rightarrow can show$ -I effect and +R effect But the dominating one is +R effect. That is why it act as o,p-directing group. \oplus \oplus :Cl: Cl Cl

(D)

3.

 \oplus

Cl

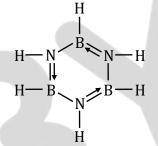
 Mg^{2+}

 Ca^{2+}

Sr²⁺

Ba²⁺

Down the group, size of cation increases and CO_3^{2-} is also large in size.


And large cation + large anion \rightarrow more stability

Hence, more comparable the size of cation and anion, more will be the thermal stability of alkaline earth metal carbonates.

Hence, BaCO₃> SrCO₃> CaCO₃> MgCO₃

9. (D)

 $B_2H_6 + 2NH_3 \xrightarrow{\Lambda} B_3N_3H_6$

Borazole or Inorganic benzene

10. (C)

According to electrochemical series,

	SRP Value
Ni	-0.25V
Zn	-0.76V
Fe	-0.44V
Cu	+0.34V

Lesser the value of E_{RP}^{0} , higher will be the tendency to get oxidized itself and reduce others and hence stronger will be the reducing agent.

KVPY-SX_2017 (CHEMISTRY)

Page | 10

a. AlCl₃ + 3H₂O \rightarrow Al(OH)₃ \downarrow + 3HCl (Al has vacant p-orbital where H₂O can attack.) b. SiCl₄ + 4H₂O \rightarrow Si(OH)₄ + 4HCl (Si has vacant d-orbital where H₂O can attack.) c. BF₃ + 3H₂O \rightarrow B(OH)₃ + 3HF (B has vacant p-orbital where H₂O can attack.) d. SF₆ + H₂O $\xrightarrow{25^{\circ}C}$ \rightarrow No reaction sulphur has vacant d-orbital but due to steric hindrance created by 6F, SF₆ cannot be hydrolysed at 25°C

12. (D)

 $(NH_4)_2Cr_2O_7 \longrightarrow N_2 + Cr_2O_3 + H_2O$ $2NaN_3 \longrightarrow 2Na + 3N_2$ $NH_4NO_2 \longrightarrow N_2 + H_2O$ $(NH_4)_2C_2O_4 \longrightarrow 2NH_3 + H_2C_2O_4$

13. (B)

Atomic mass of Cl = 35.45 = Average atomic mass

Average atomic mass =
$$\frac{n_1M_1 + n_2M_2}{n_1 + n_2}$$

$$\Rightarrow 35.45 = \frac{n_1 \times 35 + n_2 \times 37}{n_1 + n_2}$$

$$\Rightarrow 35.45n_1 + 35.45n_2 = 35n_1 + 37n_2$$

$$\Rightarrow 0.45n_1 = 1.55n_2$$

$$\Rightarrow \frac{\mathbf{n}_1}{\mathbf{n}_2} = \frac{1.55}{0.45} \approx \frac{3}{1}$$

$$\Rightarrow$$
 3:1

14. (D)

 $C_2H_6(g) \rightarrow C_2H_4(g) + H_2(g);\Delta H = +ve$

(A) Volume $\downarrow \rightarrow$ Reaction will shift in the direction where number of moles \downarrow according to Le-chatelier principle \rightarrow backward direction.

(B) $T \downarrow \rightarrow$ Reaction will shift in a direction where temperature will increase (backward) as the reaction is endothermic.

(C) Addition of inert gas at constant volume (no effect on equilibrium).

(D)Volume $\uparrow \rightarrow$ Reaction will shift in a direction where number of moles will increase

i.e. forward direction.

Correct option is (D).

15. (A)

For exothermic reaction

$$\Delta H = E_P - E_R < 0$$

$$\Rightarrow E_{\rm B} - E_{\rm A} < 0$$

 $\Rightarrow E_B < E_A$

Catalyst does not change the initial and final position of the reaction. It will only decrease the activation energy, hence increase the rate of reaction.

16. (C)

$$Mg(OH)_{2 (s)} \rightleftharpoons Mg^{2+} + 2OH^{-}$$

Equilibrium

2s

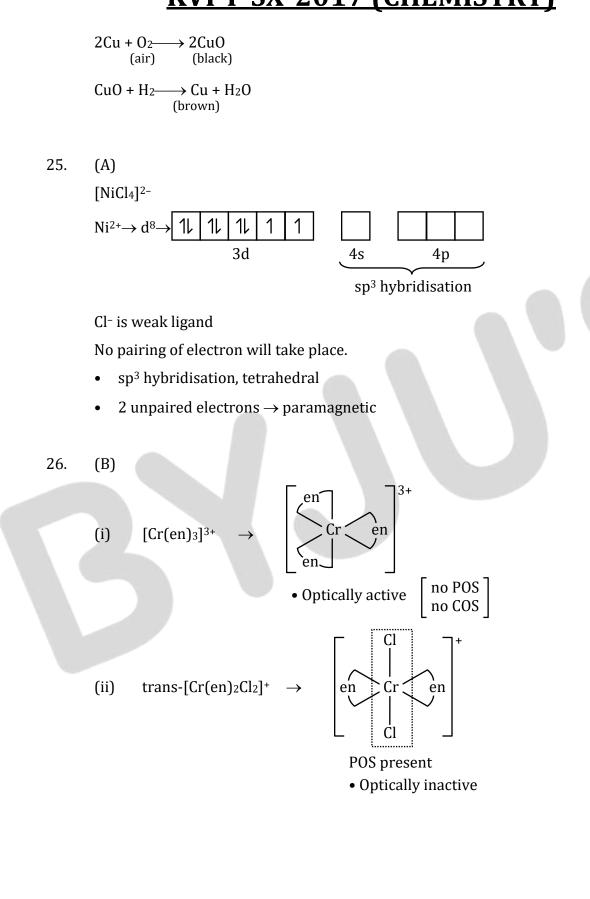
S

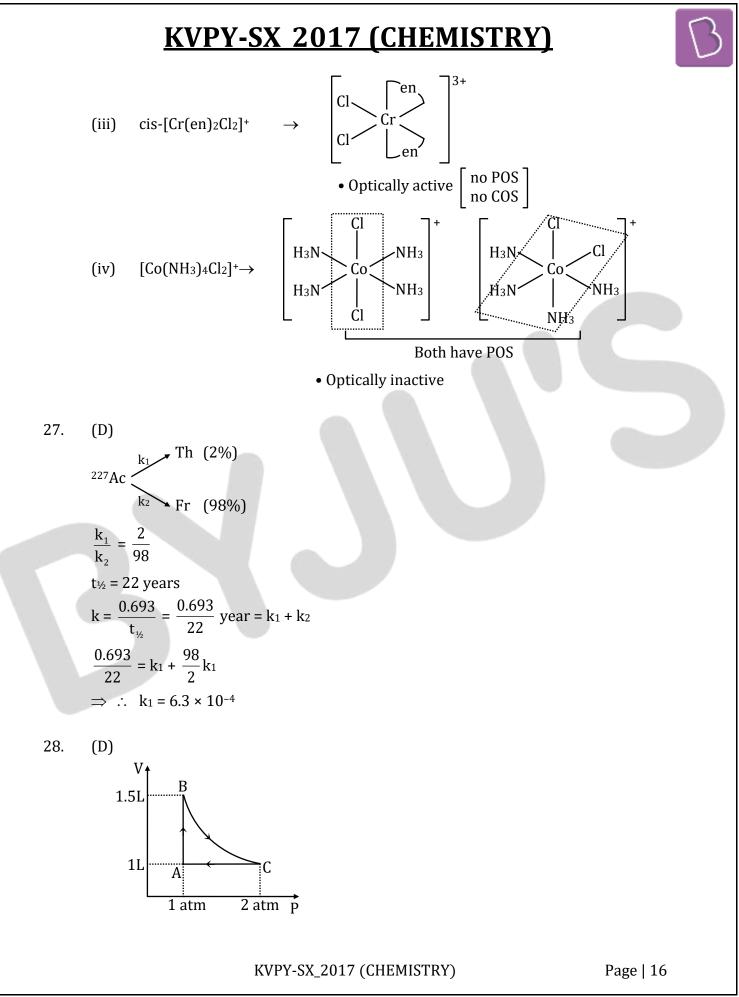
$$K_{sp} = [Mg^{2+}][OH^{-}]^{2} = 5.6 \times 10^{-12}$$
$$10^{-10} [OH^{-}]^{2} = 5.6 \times 10^{-12}$$

$$[OH^{-}] = \sqrt{5.6 \times 10^{-2}} = 0.24 \text{ M}$$

17. (C)

	Ag+	:	Cu+2	:	Al+3
No. of eq. deposit	х	:	х	:	Х
no. of mole deposit	$\frac{x}{1}$:	$\frac{x}{2}$:	$\frac{x}{3}$
	6x	:	3x	:	2x
no. of mole deposit	6	:	3	:	2
mass deposit	$6 M_{\text{Ag}}$:	$3M_{Cu}$:	$2M_{\rm Al}$


18. (A)


 $\epsilon_{a} = 209 \text{ kJmol}^{-1}$ Given: $T_{1} = 27^{\circ}C = 300 \text{ K}$ $T_{2} = x^{\circ}C = (x + 273)\text{ K}$ $\frac{K_{2}}{K_{1}} = 10$ Apply $\log \frac{K_{2}}{K_{1}} = \frac{\epsilon_{a}}{2.303 \text{ R}} \left[\frac{1}{T_{1}} - \frac{1}{T_{2}} \right]$ $1 = \log 10 = \frac{209 \times 10^{3}}{2.303 \times 8.314} \left[\frac{1}{300} - \frac{1}{x + 273} \right]$ $\Rightarrow x + 273 = 308.4 \text{ K}$ $\Rightarrow x = 35.4^{\circ}C \sqcup 35^{\circ}C$

19. (B)

No. of atoms in ccp = N Then, No. of O.V. = N No. of T.V. = 2 N No. of O⁻² per unit cell = $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$ No. of Al⁺³ per unit cell = $4 \times \frac{1}{2} = 2$ No. of Mn⁺² per unit cell = $8 \times \frac{1}{8} = 1$ MnAl₂O₄

20. (D) 4p n = 4, $\ell = 1$ No. of Radial nodes = $n - \ell - 1 = 4 - 1 - 1 = 2$ No. of Angular nodes = $\ell = 1$ (B) 21. СООН 1. B₂H₆ 2. H₂O₂/NaOH CrO_3/H_2SO_4 ЮH (Oxidation) Х Y [Hydroboration-Oxidation Reaction] Anti-markovnikov's rule 22. (A) ₩^Θ 0-D 1. NaBH4 2. D₃O⁺ H₃C ٠H Ĥ CH₃ (X) νDΘ 00 0-H 2. H₃O+ 1. NaBD4 H₃C HĎ ĊH₃ **(Y)** 23. (C)H₂/Pd (I) Chiral centre \rightarrow Optically active H₂/Pd (II) **Optically** inactive H₂/Pd (III) Optically inactive H₂/Pd (IV) Optically inactive (C) 24. KVPY-SX_2017 (CHEMISTRY) Page | 14


```
Given: n = 1 mole, T_A = 300 K, \omega_{BC} = 1 L-atm
\omega_{AB} = -P_{ext}(V_2 - V_1) = -1(1.5 - 1) = -0.5 \text{ L-atm}
(Isobaric process)
\omega_{CA} = 0 (dV = 0)
(Isochoric process)
\therefore \omega_{\text{total}} = \omega_{AB} + \omega_{BC} + \omega_{CA}
         = -0.5 + 1 + 0 = 0.5 L-atm
\Delta U calculation
For complete cyclic process ABC \rightarrow \Delta U = 0 (:: U \rightarrow is a state function)
According to first law,
    \Delta U = q + w = 0
    q = -w = -0.5 L-atm
Heat exchanged during the process = 0.5 L-atm
Correct option is (D).
(B)
P^{\circ}_{toluene} = 0.742 \text{ bar}
P°<sub>benzene</sub> = 1.800 bar
```

Mixture boils at $100^{\circ}C \rightarrow at 1 atm = 1.013 bar$

 $P_{T} = 1.013 \text{ bar} = P_{A}X_{A} + P_{B}X_{B}$

$$\implies P_{\rm T} = P_{\rm t}^{\rm o} X_{\rm t} + P_{\rm b}^{\rm o} X_{\rm b}$$

 $1.013 = 0.742 X_t + 1.8(1-X_t)$

$$\Rightarrow$$
 Xt = 0.744

 $X_b = 1 - 0.744 = 0.256$

 X_t = mole fraction of toluene.

30. (A)

29.

The unit cell of the above pattern will consist of 8 white square and 1 black square i.e. it will form centre unit cell.

- ∴ No. of white square Y = 8 No. of black square X = 1
- ∴ Formula XY₈

