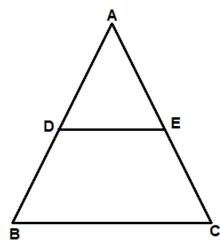


1. In \triangle ABC, DE is parallel to BC and AD/DB = 2/7. If AC = 5.6, find AE. Solution:-

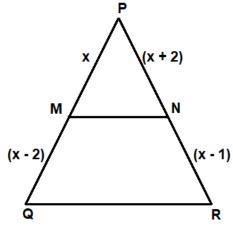


From the question it is given that, AD/DB = 2/7 and AC = 5.6Consider $\triangle ABC$, DE is parallel to BC, Let us assume AE = y From Basic Proportionality Theorem (BPT) AD/DB = AE/EC2/7 = y/(5.6 - y)2(5.6 - y) = 7y11.2 - 2y = 7y11.2 = 7y + 2y11.2 = 9yy = 11.2/9y = 1.24

Therefore, AE is 1.24

2. In $\triangle PQR$, MN is drawn parallel to QR. If PM = x, MQ = (x - 2) and NR = (x - 1), find the value of x.

Solution:-



From the question it is given that, PM = x, MQ = (x - 2) and NR = (x - 1)Consider ΔPQR ,

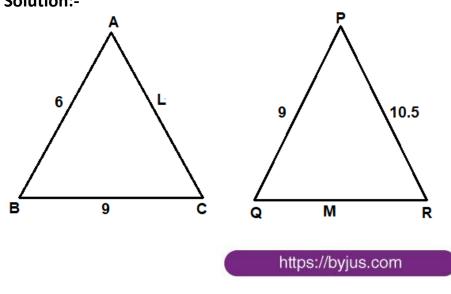
MN is drawn parallel to QR,

From Basic Proportionality Theorem (BPT) PM/MQ = PN/NR

x/(x - 2) = (x + 2)/(x - 2) x(x - 2) = (x + 2) (x - 2) $x^{2} - 2x = x^{2} - 4$ $x^{2} - x^{2} - 2x = -4$ -2x = -4 x = -4/-2x = 2

Therefore, PM = x = 2 MQ = x - 2 = 2 - 2 = 0NR = x - 1 = 2 - 1 = 1

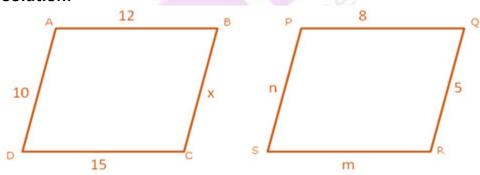
3. \triangle ABC is similar to \triangle PQR. If AB = 6 cm, BC = 9 cm, PQ = 9 cm and PR = 10.5 cm, find the lengths of AC and QR. Solution:-



From the question it is given that, $\triangle ABC \sim \triangle PQR$ AB = 6 cm, BC = 9 cm, PQ = 9 cm and PR = 10.5 cm Now, consider $\triangle ABC$ and $\triangle PQR$ AB/PQ = BC/QR = AC/PR6/9 = 9/M = L/10.5 Take first two fraction, 6/9 = 9/q 6M = 81 M = 81/6M = 27/2Then, QR = 13.5 cm Now consider second and third fraction, 9/M = L/10.59/13.5 = L/10.5 9(10.5) = 13.5L94.5 = 13.5LL = 94.5/13.5L = 7 cm

So, AC = 7 cm

4. ABCD and PQRS are similar figures. AB = 12 cm, BC = x cm, CD = 15 cm, AD = 10 cm, PQ = 8 cm, QR = 5 cm, RS = m cm and PS = n cm. Find the values of x, m and n. Solution:-



From the question it is given, quadrilateral ABCD \sim quadrilateral PQRS. AB = 12 cm, BC = x cm, CD = 15 cm, AD = 10 cm, PQ = 8 cm, QR = 5 cm, RS = m cm and PS = n cm. Then, AB/PQ = BC/QR = DC/SR = AD/SR

12/8 = x/5 = 15/m = 10/nConsider, 12/8 = x/5 By cross multiplication we get, $12 \times 5 = 8 \times x$

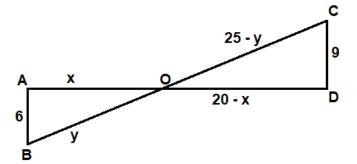
60 = 8x

x = 60/8x = 7.5 cm Then, consider x/5 = 15/m7.5/5 = 15/mBy cross multiplication we get, $7.5 \times m = 15 \times 5$ 7.5m = 75m = 75/7.5m = 750/75m = 10 cmNow, consider 15/m = 10/n15/10 = 10/nBy cross multiplication we get, $15 \times n = 10 \times 10$ 15n = 100n = 100/15n = 6.67 cm

Therefore, the value of x is 7.5 cm, value of m is 10 cm and value of n is 6.67 cm.

5. AD and BC are two straight lines intersecting at O. CD and BA are perpendiculars from B and C on AD. If AB = 6 cm, CD = 9 cm, AD = 20 cm and BC = 25 cm, find the lengths of AO, BO, CO and DO.

Solution:-



From the question it is given that, AB = 6 cm, CD = 9 cm, AD = 20 cm and BC = 25 cmWe have to find the lengths of AO, BO, CO and DO.

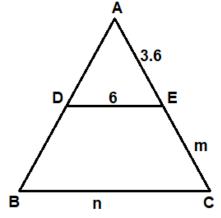
Consider $\triangle AOB$ and $\triangle COD$,

∠OAB = ∠ODC	[because both angles are equal to 90°]
∠AOB = ∠DOC	[because vertically opposite angles are equal]
Therefore, ΔΑΟΒ ~ ΔDOC	[from AA corollary]

Then, AO/DO = OB/OC = AB/DCx/(20 - x) = y/(25 - y) = 6/9Consider, x/(20 - x) = 6/9x/(20 - x) = 2/3By cross multiplication we get, 3x = 2(20 - x)3x = 40 - 2x3x + 2x = 405x = 40 x = 40/5x = 8 Now, consider y/(25 - y) = 6/9y/(25 - y) = 2/3By cross multiplication we get, 3y = 2(25 - y)3y = 50 - 2y3y + 2y = 505y = 50y = 50/5y = 10 Therefore, AO = x = 8 cmOD = 20 - x = 20 - 8 = 12 cmBO = y = 10 cmOC = 25 - y = 25 - 10 = 15 cm

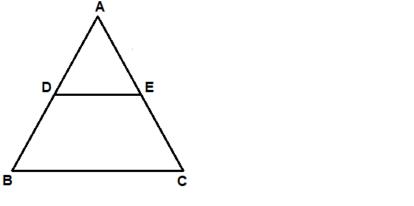
6. In \triangle ABC, DE is drawn parallel to BC. If AD: DB = 2: 3, DE = 6 cm and AE = 3.6 cm find BC and AC.

Solution:-



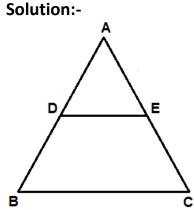
From the question it is given that, AD: DB = 2: 3, DE = 6 cm and AE = 3.6 cm Now consider the $\triangle ABC$, DE || BC ... [given] From Basic Proportionality Theorem (BPT) AD/DB = AE/EC 2/3 = 3.6/m $2m = 3 \times 3.6$ 2m = 10.8m = 10.8/2m = 5.4 cm So, EC = 5.4 cm Therefore, AC = 3.6 + x= 3.6 + 5.4= 9 cm Now, consider the \triangle ADE and \triangle ABC, ... [because corresponding angles are equal] $\angle ABC = \angle ADE$ $\angle ACB = \angle AED$... [because corresponding angles are equal] ... [from AA corollary] Therefore, $\triangle ABC \sim \triangle ADE$ AE/AC = DE/BC3.6/9 = 6/nBy cross multiplication we get, $3.6n = 9 \times 6$ 3.6n = 54 n = 54/3.6n = 15 So, BC = 15 cm

7. D and E are points on the sides AB and AC respectively of \triangle ABC such that AB = 5.6 cm, AD = 1.4 cm, AC = 7.2 cm and AE = 1.8 cm, show that DE is parallel to BC. Solution:-



From the question it is given that, AB = 5.6 cm, AD = 1.4 cm, AC = 7.2 cm and AE = 1.8 cmWe have to show that, $DE \parallel BC$ Consider the $\triangle ABC$, AD/DB = 1.4/4.2= 14/42AD/DB = 1/3 ... (i) AE/EC = 1.8/5.4= 18/54AE/EC = 1/3 ... (ii) From (i) and (ii) AD/DB = AE/ECHence, it is proved that $DE \parallel BC$ by converse BPT.

8. In \triangle ABC, D and E are points on the sides AB and AC respectively. If AD = 4 cm, DB = 4.5 cm, AE = 6.4 cm and EC = 7.2 cm, find if DE is parallel to BC or not.

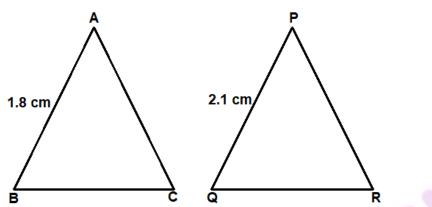


From the question it is given that, AD = 4 cm, DB = 4.5 cm, AE = 6.4 cm and EC = 7.2 cm We have to show that, DE || BC

Consider the $\triangle ABC$, AD/DB = 4/4.5 = 40/45 AD/DB = 8/9 ... (i) AE/EC = 6.4/7.2 = 64/72 AE/EC = 8/9 ... (ii) From (i) and (ii) AD/DB = AE/ECHence, it is proved that DE || BC by converse BPT.

9. \triangle ABC ~ \triangle PQR such that AB = 1.8 cm and PQ = 2.1 cm. Find the ratio of areas of \triangle ABC and \triangle PQR.

Solution:-



From the question it is given that, $\triangle ABC \sim \triangle PQR$ and AB = 1.8 cm, PQ = 2.1 cm

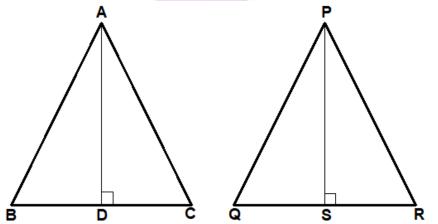
We know that, the ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides.

So, Area of $\triangle ABC/Area$ of $\triangle PQR = AB^2/PQ^2$

$$= (1.8)^{2}/(2.1)^{2}$$
$$= (18/21)^{2}$$
$$= (6/7)^{2}$$
$$= 36/49$$

Therefore, the ratio of areas of $\triangle ABC$ and $\triangle PQR$ is 36: 49.

10. $\triangle ABC \sim \triangle PQR$, AD and PS are altitudes from A and P on sides BC and QR respectively. If AD: PS = 4: 9, find the ratio of the areas of $\triangle ABC$ and $\triangle PQR$. Solution:-

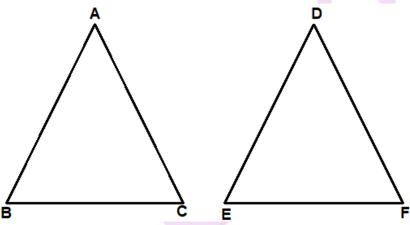


From the question it is given that, $\triangle ABC \sim \triangle PQR$ and AD: PS = 4: 9 We know that, the ratio of areas of two similar triangles is equal to the ratio of square of

their corresponding sides. So, Area of $\triangle ABC/Area$ of $\triangle PQR = AB^2/PQ^2$... [equation (i)] Now, consider the \triangle BAD and \triangle QPS $\angle ABD = \angle PQS$... [because $\triangle ABC \sim \triangle PQR$] $\angle AOB = \angle PSO$... [because both angles are equal to 90°] Therefore, $\Delta BAD \sim \Delta QPS$... [from AA corollary] So, AB/PQ = AD/PS ... [equation (ii)] From equation (i) and equation (ii), Area of $\triangle ABC/Area$ of $\triangle PQR = AD^2/PS^2$ $= (4)^2/(9)^2$ = 16/81

Therefore, the ratio of areas of $\triangle ABC$ and $\triangle PQR$ is 16: 81.

11. $\triangle ABC \sim \triangle DEF$. If BC = 3 cm, EF = 4 cm and area of $\triangle ABC = 54 \text{ cm}^2$, find the area of $\triangle DEF$.

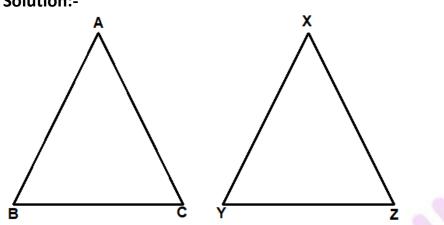


From the question it is given that, $\triangle ABC \sim \triangle DEF$ and BC = 3 cm, EF = 4 cm and area of $\triangle ABC = 54 \text{ cm}^2$

We know that, the ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides.

So, Area of $\triangle ABC/Area$ of $\triangle DEF = BC^2/EF^2$ 54/Area of $\triangle DEF = (3)^2/(4)^2$ 54/Area of $\triangle DEF = 9/16$ Area of $\triangle DEF = (54 \times 16)/9$ Area of $\triangle DEF = 96 \text{ cm}^2$ Therefore, area of $\triangle DEF$ is 96 cm².

12. \triangle ABC ~ \triangle XYZ. If area of \triangle ABC is 9 cm² and area of \triangle XYZ is 16 cm² and if BC = 2.1 cm, find the length of YZ. Solution:-



From the question it is given that, $\triangle ABC \sim \triangle XYZ$, area of $\triangle ABC$ is 9 cm² and area of $\triangle XYZ$ is 16 cm² and BC = 2.1 cm

We know that, the ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides.

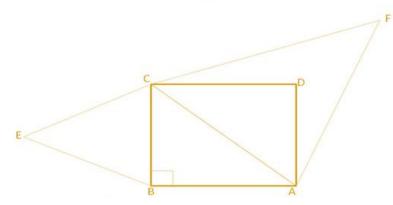
So, Area of $\triangle ABC/Area$ of $\triangle XYZ = BC^2/YZ^2$

$$9/16 = (2.1)^2/(YZ)^2$$

Taking square root on both sides we get,

Therefore, YZ is 2.8 cm.

13. Prove that the area of \triangle BCE described on one side BC of a square ABCD is one half the area of the similar \triangle ACF described on the diagonal AC. Solution:-



Consider the right angle triangle ABC,

BYJU'S The Learning App Frank Solutions for Class 10 Maths Chapter 15 Similarity

We know that, Pythagoras theorem, $AC^2 = AB^2 + BC^2$ $AC^2 = 2BC^2$

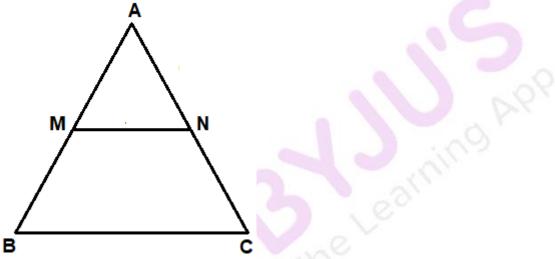
From the question it is given that, $\triangle BCE \sim \triangle ACF$

We know that, the ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides.

So, Area of \triangle BCE/Area of \triangle ACF = BC²/AC²

Therefore, the ratio of areas of \triangle BCE and \triangle ACF is 1: 2.

14. In ΔABC, MN || BC



(a) If AN: AC = 5: 8, find the ratio of area of Δ AMN: area of Δ ABC Solution:-

From the it is given that, AN: AC = 5:8

We have to find the ratio of area of ΔAMN : area of ΔAB

So, consider the Δ AMN and Δ ABC

 $\angle ANM = \angle ACB$

∠AMN = ∠ABC	[because corresponding angles are equal]
-------------	--

... [because corresponding angles are equal]

Therefore, ΔAMN ~ ΔABC ... [from AA corollary]

We know that, the ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides.

So, Area of $\Delta AMN/Area$ of $\Delta ABC = AN^2/AC^2$

$$=(5/8)^2$$

Therefore, the ratio of areas of $\triangle AMN$ and $\triangle ABC$ is 25: 64.

(b) If AB/AM = 9/4, find area of trapezium MBCN/area of Δ ABC.

Solution:-

From the it is given that, AB/AM = 9/4 In the above solution we prove that, Δ AMN ~ Δ ABC So, Area of Δ AMN/Area of Δ ABC = AM²/AB² = 4²/9²

(Area of $\triangle ABC - Area$ of trapezium MBCN)/area of $\triangle ABC = 16/81$

By cross multiplication we get,

81(Area of $\triangle ABC$ – Area of trapezium MBCN) = area of $\triangle ABC \times 16$

 $(81 \times \text{Area of } \Delta \text{ABC}) - (81 \times \text{area of trapezium MBCN}) = 16 \times \text{area of } \Delta \text{ABC}$

64 area of $\triangle ABC = 81$ area of trapezium MBCN

Then, area of trapezium MBCN/area of $\triangle ABC = 65/81$

Therefore, the ratio of areas of trapezium MBCN and \triangle ABC is 65: 81.

(c) If BC = 14 cm and MN = 6 cm, find area of Δ AMN/area of trapezium MBCN Solution:-

From the it is given that, BC = 14 cm and MN = 6 cm In the above solution (a) we prove that, $\Delta AMN \sim \Delta ABC$ So, Area of $\Delta AMN/Area$ of $\Delta ABC = MN^2/BC^2$

(Area of Δ AMN/Area of Δ AMN + Area of trapezium MBCN) = 9/49 By cross multiplication we get,

49(Area of Δ AMN) = 9 (Area of Δ AMN + Area of trapezium MBCN)

49 Area of Δ AMN = 9 Area of Δ AMN + 9 Area of trapezium MBCN

49 area of $\Delta AMN = 9$ area of trapezium MBCN

Then, area of ΔABC /area of trapezium MBCN = 9/40

Therefore, the ratio of area of $\triangle ABC$ and area of trapezium is 9: 40.

15. In \triangle ABC, DE || BC; DC and EB intersect at F, if DE/BC = 2/7, find area of \triangle FDE/area of \triangle FBC

Solution:-

