

EXERCISE

PAGE: 337

In questions 1 to 22, there are four options, out of which one is correct. Write the correct one. 1. $[(-3)^2]^3$ is equal to (a) (-3)⁸ (b) (-3)⁶ (c) (-3)⁵ (d) (-3)²³ Solution:-(b) (-3)⁶ For any non-zero integers 'a' and 'b' and whole numbers m and n, $(a^{m})^{n} = a^{mn}$ $[(-3)^2]^3 = -3^{(2 \times 3)}$ $= -3^{6}$ 2. For a non-zero rational number x, $x^8 \div x^2$ is equal to (b) x⁶ (c) x¹⁰ (a) x⁴ Solution:-(b) x⁶ For any non-zero integers 'a' and 'b' and whole numbers m and n, $a^m \div a^n = a^{m-n}, m > n$ so, $x^8 \div x^2$ $= x^{8}/x^{2}$ $= x^{8-2}$ **= x**⁶ 3. x is a non-zero rational number. Product of the square of x with the cube of x is equal to the (a) second power of x (b) third power of x (c) fifth power of x (d) sixth power of x Solution:-(c) fifth power of x From the question, it is given that, The square of $x = x^2$ The cube of $x = x^3$ As per the condition given in the question, $x^2 \times x^3$ For any non-zero integers 'a' and 'b' and whole numbers m and n, $a^m \times a^n = a^{m+n}$ $x^2 \times x^3 = x^{2+3}$

= x⁵

Therefore, fifth power of x.

4. For any two non-zero rational numbers x and y, $x^5 \div y^5$ is equal to (b) $(x \div y)^{0}$ (c) (x÷y)⁵ (d) (x÷y)¹⁰ (a) $(x \div y)^{1}$ Solution:-(c) $(x \div y)^5$ For any non-zero integers 'a' and 'b' and whole numbers m and n, $a^m \div b^m = (a/b)^m$ $x^5 \div y^5 = (x/y)^5 = (x \div y)^5$ 5. $a^m \times a^n$ is equal to (d) a^{mn} (c) a^{m+n} (b) a^{m-n} (a) (a²)^{mn} Solution:-(c) a^{m+n} $a^m \times a^n$ is equal to a^{m+n} 6. $(1^0 + 2^0 + 3^0)$ is equal to (c) 3 (d) 6 (a) 0 (b) 1 Solution:-(c) 3 For any non-zero integers 'a' and 'b' and whole numbers m and n, $a^0 = 1$ So, $1^0 = 1$, $2^0 = 1$, $3^0 = 1$ Then, (1 + 1 + 1)= 3 7. Value of $(10^{22} + 10^{20})/10^{20}$ is (b) 10⁴² (d) 10^{22} (c) 101 (a) 10 Solution:-(c) 101 By splitting, $(10^{22} + 10^{20})/10^{20}$ we get, $=(10^{22}/10^{20})+(10^{20}/10^{20})$ By using the rule $a^m \div a^n = a^{m-n}$, m>n $= 10^{(22 - 20)} + 1$ $= 10^2 + 1$ = 100 + 1

(b) 123.45×10^2

(d) 1.2345×10^4

= 101

8. The standard form of the number 12345 is

(a) 1234.5 × 10¹

(c) 12.345×10^3

Solution:-

```
(d) 1.2345 \times 10^4
```

Any number can be expressed as a decimal number between 1.0 and 10.0 (including 1.0) multiplied by a power of 10. Such form of a number is called its standard form or scientific notation.

9. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = K2^{1995}$, then the value of K is (a) 1 (c) 3 (d) 4 (b) 2 Solution:-(c) 3 $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = K2^{1995}$ By cross multiplication we get, $(2^{1998}/2^{1995}) - (2^{1997}/2^{1995}) - (2^{1996}/2^{1995}) + (2^{1995}/2^{1995}) = K$ By the rule, $a^m \div a^n = a^{m-n}$, m>n $\mathsf{K} = (2^{1998 - 1995}) - (2^{1997 - 1995}) - (2^{1996 - 1995}) + (2^{1995 - 1995})$ $K = 2^3 - 2^2 - 2^1 + 2^0$ K = 8 - 4 - 2 + 1K = 310. Which of the following is equal to 1? (a) $2^0 + 3^0 + 4^0$ (b) $2^0 \times 3^0 \times 4^0$ (d) $(3^{\circ} - 2^{\circ}) \times (3^{\circ} + 2^{\circ})$ (c) $(3^0 - 2^0) \times 4^0$ Solution:-(b) $2^0 \times 3^0 \times 4^0$ For any non-zero integers 'a' and 'b' and whole numbers m and n, $a^0 = 1$ So, $2^0 = 1$, $3^0 = 1$, $4^\circ = 1$ Then, $(1 \times 1 \times 1)$ = 1

11. In standard form, the number 72105.4 is written as 7.21054×10^{n} where n is equal to

(d) 5

(a) 2 (b) 3 (c) 4

Solution:-

(c) 4

Any number can be expressed as a decimal number between 1.0 and 10.0 (including 1.0) multiplied by a power of 10. Such form of a number is called its standard form or scientific notation.

72105.4 is written as 7.21054 × 10⁴

12. Square of (-2/3	3) is		
(a) -2/3 Solution:-	(b) 2/3	(c) -4/9	(d) 4/9
(d) 4/9			
Square of (-2/3) is	$= -2^2/3^2$		
	= (-2 × -2)/(3 × 3) = 4/9		
13. cube of (-1/4)	is		
(a) -1/12	(b) 1/16	(c) -1/64	(d) 1/64
Solution:-			
(c) -1/64			
Cube of (-1/4) is =	$-1^{3}/4^{3}$	0	
	$= (-1 \times -1 \times -1)/(4$	× 4 × 4)	
	= -1/64		
14 Which of the f	allowing is not as	(1)	
14. Which of the $(-5)^4/4^4$	(h) s	1ual (0 (-5/4) : 54/(_4)4	
(a) $(-5) / 4$ (c) $-(5^4/4^4)$	(d) (• / (- - +) -5/4) × (-5/4) × (-5/	4) × (-5/4)
Solution:-			
(c) $-(5^4/4^4)$			
15. Which of the f	ollowing is not ec	jual to 1 ?	
(a) $(2^3 \times 3^3)/(4 \times 18^3)$	8)		(b) $[(-2)^3 \times (-2)^4] \div (-2)^2$
(c) $(3^{\circ} \times 5^{3})/(5 \times 25^{\circ})$	5)		(d) 2 ⁴ /(7 ⁰ + 3 ⁰) ³
Solution:-			
(d) $2^4/(7^0 + 3^0)^3$			
$= \frac{2^4}{(1+1)^3}$			
$= 2^{4}/2^{3}$			

16. $(2/3)^3 \times (5/7)^3$ is equal to (a) ((2/3) × (5/7))⁹ (b) $((2/3) \times (5/7))^6$ (d) $((2/3) \times (5/7))^{\circ}$ (c) $((2/3) \times (5/7))^3$ Solution:-(c) $((2/3) \times (5/7))^3$ For any non-zero integers 'a' and 'b' and whole numbers m and n. $a^m \times b^m = (ab)^m$ 17. In standard form, the number 829030000 is written as $K \times 10^8$ where K is equal to (b) 829.03 (c) 82.903 (d) 8.2903 (a) 82903 Solution:-(d) 8.2903 Any number can be expressed as a decimal number between 1.0 and 10.0 (including 1.0) multiplied by a power of 10. Such form of a number is called its standard form or scientific notation. 829030000 is written as 8.2903 × 10⁸ 18. Which of the following has the largest value? (d) $(1/10^6) \div 0.1$ (c) $1/10^6$ (a) 0.0001 (b) 1/10000 Solution:-(a) 0.0001 and (b) 1/10000 = 0.0001 19. In standard form 72 crore is written as (a) 72×10^7 (b) 72×10^8 (c) 7.2×10^8 (d) 7.2×10^7 Solution:-(c) 7.2×10^8 Any number can be expressed as a decimal number between 1.0 and 10.0 (including 1.0) multiplied by a power of 10. Such form of a number is called its standard form or scientific notation. 72 crore is written as = 72,00,00,000 = 7.2×10^8 20. For non-zero numbers a and b, $(a/b)^m \div (a/b)^n$, where m>n, is equal to (b) (a/b)^{m + n} (c) $(a/b)^{m-n}$ (d) $((a/b)^{m})^{n}$ (a) (a/b)^{mn} Solution:-(c) $(a/b)^{m-n}$

For any non-zero integers 'a' and 'b' and whole numbers m and n,

 $a^m \div a^n = a^{m-n}$, m>n

21. Which of the following is not true? (a) $3^2 > 2^3$ (b) $4^3 = 2^6$ (c) $3^3 = 9$ (d) 25 > 5Solution:-(c) $3^3 = 9$ $3 \times 3 \times 3 = 27$ Therefore, 27 > 9

22. Which power of 8 is equal to 2^6 ? (a) 3 (b) 2 (c) 1 (d) 4 Solution:-(b) 2 $2^6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$ = 64 $8^2 = 8 \times 8 = 64$

In questions 23 to 39, fill in the blanks to make the statements true. 23. $(-2)^{31} \times (-2)^{13} = (-2)$ — Solution:- $(-2)^{31} \times (-2)^{13} = (-2)^{44}$

For any non-zero integers 'a' and 'b' and whole numbers m and n, $a^m \times a^n = a^{m+n}$ $(-2)^{31} \times (-2)^{13} = (-2)^{31+13}$ $= -2^{44}$

24. (-3)⁸ ÷ (-3)⁵ = (-3)—— Solution:-

 $(-3)^8 \div (-3)^5 = (-3)^3$ For any non-zero integers 'a' and 'b' and whole numbers m and n, $a^m \div a^n = a^{m-n}$, m>n $(-3)^8 \div (-3)^5 = (-3)^{8-5}$ $= -3^3$

25. $(11/15)^4 \times (_)^5 = (11/15)^9$ Solution:- $(11/15)^4 \times (\underline{11/15})^5 = (11/15)^9$

We know that, For any non-zero integers 'a' and 'b' and whole numbers m and n, $a^m \times a^n = a^{m+n}$ Therefore, $(11/15)^4 \times (11/15)^5 = (11/15)^9$

26. $(-1/4)^3 \times (-1/4)$ = $(-1/4)^{11}$ Solution:- $(-1/4)^3 \times (-1/4)^{\underline{8}} = (-1/4)^{11}$ We know that, For any non-zero integers 'a' and 'b' and whole numbers m and n,

 $a^m \times a^n = a^{m+n}$

Let us assume missing power be y, Then $(-1/4)^3 \times (-1/4)^9 - (-1/4)^{11}$

ten,
$$(-1/4)^{\circ} \times (-1/4)^{\circ} = (-1/4)^{-1/4}^{-1/$$

27. [(7/11)³]⁴ = (7/11)—

Solution:-

```
\begin{split} & [(7/11)^3]^4 = (7/11)^{\underline{12}} \\ & \text{For any non-zero integers 'a' and 'b' and whole numbers m and n,} \\ & (a^m)^n = a^{mn} \\ & [(7/11)^3]^4 = (7/11)^{(3 \times 4)} \\ & = (7/11)^{12} \end{split}
```

28. (6/13)¹⁰ ÷ [(6/13)⁵]² = (6/13) Solution:-

 $(6/13)^{10} \div [(6/13)^5]^2 = (6/13)^0$ In the given question first consider $[(6/13)^5]^2$ For any non-zero integers 'a' and 'b' and whole numbers m and n, $(a^m)^n = a^{mn}$ $[(6/13)^5]^2 = (6/13)^{(5 \times 2)}$ $= (6/13)^{10}$ Then, $(6/13)^{10} \div (6/13)^{10}$ For any non-zero integers 'a' and 'b' and whole numbers m and n, $a^m \div a^n = a^{m-n}$, m>n $(6/13)^{10} \div (6/13)^{10} = (6/13)^{10-10}$

= (6/13)⁰

29. [(-1/4)¹⁶]² = (-1/4)—— Solution:-

 $[(-1/4)^{16}]^2 = (-1/4)^{32}$ For any non-zero integers 'a' and 'b' and whole numbers m and n, $(a^m)^n = a^{mn}$ $[(-1/4)^{16}]^2 = (-1/4)^{(16 \times 2)}$ $= (-1/4)^{32}$

30. $(13/14)^5 \div (_)^2 = (13/14)^3$ Solution:-

 $(13/14)^5 \div (\underline{13/14})^2 = (13/14)^3$ We know that, For any non-zero integers 'a' and 'b' and whole numbers m and n, $a^m \div a^n = a^{m-n}$, m>n Therefore, $(13/14)^5 \div (13/14)^2 = (13/14)^{5-2}$ $= (13/14)^3$

31. $a^6 \times a^5 \times a^0 = a$ **Solution:** $a^6 \times a^5 \times a^0 = a^{\underline{11}}$ We know that, For any non-zero integers 'a' and 'b' and whole numbers m and n, $a^m \times a^n \times a^0 = a^{m+n+0}$ $a^6 \times a^5 \times a^0 = a^{5+6+0}$ $= a^{\underline{11}}$

32. 1 lakh = 10-----Solution: -

1 lakh = 10⁵

Any number can be expressed as a decimal number between 1.0 and 10.0 (including 1.0) multiplied by a power of 10. Such form of a number is called its standard form or scientific notation.

1 lakh = 1,00,000

= 10⁵

33. 1 million = 10

Solution:-

1 million = 10^{6}

Any number can be expressed as a decimal number between 1.0 and 10.0 (including 1.0) multiplied by a power of 10. Such form of a number is called its standard form or scientific notation.

1 million = 10,00,000 = 10⁶

34. 729 = 3			
Solution: -			
729 = 3 ⁶			
Now, we have to find out the factors of 729.			
3 729			
3 243			
3 81			
3 27			
3 9			
33			
1			
Therefore, factors of 729 are = $3 \times 3 \times 3 \times 3 \times 3 \times 3$			
729 = 36			
$35. 432 = 2^4 \times 3$			
Solution:-			
$432 = 2^4 \times 3^3$			
Now, we have to find out the factors of 432.			
2 432			
2 216			
2 108			
2 54			
3 27			
39			
33			
Therefore, factors of 432 are = $2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$			

$$432 = 2^4 \times 3^3$$

36. 53700000 = ---- × 10⁷

Solution:-

 $53700000 = \frac{5.37}{5} \times 10^{7}$ = (53700000/10000000) × 10000000 = 5.37 × 10⁷

Any number can be expressed as a decimal number between 1.0 and 10.0 (including 1.0) multiplied by a power of 10. Such form of a number is called its standard form or scientific notation

37. 8888000000 = $--- \times 10^{10}$ Solution:-88880000000 = $\underline{8.888} \times 10^{10}$ = (8888000000/1000000000) × 1000000000 = 8.888 × 10¹⁰

38. 27500000 = 2.75 × 10-----

Solution:-

 $27500000 = 2.75 \times 10^{7}$

= (2750000/1000000) × 1000000

 $= 2.75 \times 10^7$

39. 340900000 = 3.409 × 10----

Solution:- $340900000 = 3.409 \times 10^{\underline{8}}$ $= (340900000/100000000) \times 100000000$ $= 3.409 \times 10^{\underline{8}}$

40. Fill in the blanks with <, > or = sign. (a) 3^2 _____15 Solution:- $3^2 \le 15$ Where, $3^2 = 3 \times 3 = 9$ Therefore, 9 < 15

(b) $2^3 _ 3^2$ Solution:- $2^3 \le 3^2$ Where, $2^3 = 2 \times 2 \times 2 = 8$

3² = 3 × 3 = 9 Therefore, 8 < 9

(c) $7^4 __5^4$ Solution:- $7^4 \ge 5^4$ Where, $7^4 = 7 \times 7 \times 7 \times 7 = 2401$ $5 \times 5 \times 5 \times 5 = 625$ Therefore, 2401 > 625

(d) 10,000 _____ 10⁵ Solution:-10,000 \leq 100000 Where, 10 \times 10 \times 10 \times 10 \times 10= 100000 Therefore, 10,000 < 100000

(e) $6^3 __4^4$ Solution:- $6^3 \le 4^4$ Where, $6^3 = 6 \times 6 \times 6 = 216$ $4^4 = 4 \times 4 \times 4 \times 4 = 256$ Therefore, 216 < 256

In questions 41 to 50, state whether the given statements are True or False. 41. One million = 10^7 Solution:-False. We know that, 1 million = 10,00,000 $= 10^6$ 42. One hour = 60^2 seconds Solution:-True. We know that, 1 hour = 60 minutes 1 minutes = 60 seconds Therefore, 1 hour = $60 \times 60 = 3600$ seconds

43. $1^0 \times 0^1 = 1$

Solution:-

False $1^{0} = 1$ $0^{1} = 0$ So, $1 \times 0 = 0$

44. $(-3)^4 = -12$ Solution:-False. $(-3)^4 = -3 \times -3 \times -3 \times -3 = 81$ So, 81 ≠ -12

45. 3⁴ > 4³

Solution:-

True. $3^4 = 3 \times 3 \times 3 \times 3 = 81$ $4^3 = 4 \times 4 \times 4 = 64$ Therefore, 81 > 64

46. $(-3/5)^{100} = (-3^{100}/-5^{100})$ Solution:-True. Consider the LHS = $(-3/5)^{100}$ -3 can be written as = (-1×3) So, $((-1 \times 3)/5)^{100}$ = $(-1^{100} \times 3^{100})/5^{100}$ = $(1 \times 3^{100})/5^{100}$ = $3^{100}/5^{100}$ Then, consider the RHS = $-3^{100}/-5^{100}$ = $3^{100}/5^{100}$ By comparing LHS and RHS, LHS = RHS $3^{100}/5^{100} = 3^{100}/5^{100}$ Therefore, $(-3/5)^{100} = (-3^{100}/-5^{100})$

47. (10 + 10)¹⁰ = 10¹⁰ + 10¹⁰ Solution:-

False.

For any non-zero integers 'a' and 'b' and whole numbers m and n, $a^m \times a^n = a^{m+n}$

48. $x^0 \times x^0 = x^0 \div x^0$ is true for all non-zero values of x.

Solution:-True. we know that, $x^0 = 1$ so, $x^0 \times x^0 = 1 \times 1 = 1$ $x^0 \div x^0 = 1 \div 1 = 1$ Therefore, $x^0 \times x^0 = x^0 \div x^0$ 1 = 1

49. In the standard form, a large number can be expressed as a decimal number between 0 and 1, multiplied by a power of 10.

Solution:-

False

Any number can be expressed as a decimal number between 1.0 and 10.0 (including 1.0) multiplied by a power of 10. Such form of a number is called its standard form or scientific notation.

50. 4² is greater than 2⁴.

Solution:-False. $4^2 = 4 \times 4 = 16$ $2^4 = 2 \times 2 \times 2 \times 2 = 16$ Therefore, $4^2 = 2^4$